Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis

Abstract

Much psychiatric genetic research has focused on a 40-base pair variable number of tandem repeats (VNTR) polymorphism located in the 3′-untranslated region (3′UTR) of the dopamine active transporter (DAT) gene (SLC6A3). This variant produces two common alleles with 9- and 10-repeats (9R and 10R). Studies associating this variant with in vivo DAT activity in humans have had mixed results. We searched for studies using positron emission tomography (PET) or single-photon emission computed tomography (SPECT) to evaluate this association. Random effects meta-analyses assessed the association of the 3′UTR variant with DAT activity. We also evaluated heterogeneity among studies and evidence for publication bias. We found twelve studies comprising 511 subjects, 125 from PET studies and 386 from SPECT studies. The PET studies provided highly significant evidence that the 9R allele was associated with increased DAT activity in human adults. The SPECT studies were highly heterogeneous. As a group, they suggested no association between the 3′UTR polymorphism and DAT activity. When the analysis was limited to the most commonly used ligand, [123I]β-CIT, stratification by affection status dramatically reduced heterogeneity and revealed a significant association of the 9R allele with increased DAT activity for healthy subjects. In humans, the 9R allele of the 3′UTR polymorphism of SLC6A3 regulates dopamine activity in the striatal brain regions independent of the presence of neuropsychiatric illness. Differences in study methodology account for the heterogeneous results across individual studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Brookes KJ, Xu X, Anney R, Franke B, Zhou K, Chen W et al. Association of ADHD with genetic variants in the 5'-region of the dopamine transporter gene: Evidence for allelic heterogeneity. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1519–1523.

    Article  CAS  PubMed  Google Scholar 

  2. Asherson P, Brookes K, Franke B, Chen W, Gill M, Ebstein RP et al. Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am J Psychiatry 2007; 164: 674–677.

    Article  PubMed  Google Scholar 

  3. Roessner V, Sagvolden T, Dasbanerjee T, Middleton FA, Faraone SV, Walaas SI et al. Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not to the same extent in one of the attention-deficit/hyperactivity disorder inattentive type. Neuroscience 2011; 167: 1183–1191.

    Article  CAS  Google Scholar 

  4. Mick E, Kim JW, Biederman J, Wozniak J, Wilens T, Spencer T et al. Family based association study of pediatric bipolar disorder and the dopamine transporter gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1182–1185.

    Article  CAS  PubMed  Google Scholar 

  5. Tarnok Z, Ronai Z, Gervai J, Kereszturi E, Gadoros J, Sasvari-Szekely M et al. Dopaminergic candidate genes in Tourette syndrome: association between tic severity and 3'UTR polymorphism of the dopamine transporter gene. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 900–905.

    Article  CAS  PubMed  Google Scholar 

  6. Du Y, Nie Y, Li Y, Wan YJ . The association between the SLC6A3 VNTR 9-repeat allele and alcoholism-a meta-analysis. Alcohol Clin Exp Res 2011; 35: 1625–1634.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gamma F, Faraone SV, Glatt SJ, Yeh YC, Tsuang MT . Meta-analysis shows schizophrenia is not associated with the 40-base-pair repeat polymorphism of the dopamine transporter gene. Schizophr Res 2005; 73: 55–58.

    Article  CAS  PubMed  Google Scholar 

  8. Faraone SV, Mick E . Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am 2010; 33: 159–180.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Franke B, Vasquez AA, Johansson S, Hoogman M, Romanos J, Boreatti-Hummer A et al. Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology 2010; 35: 656–664.

    Article  CAS  PubMed  Google Scholar 

  10. Kuczenski R, Segal DS . Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 2002; 22: 7264–7271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Segal DS, Kuczenski R . Repeated binge exposures to amphetamine and methamphetamine: behavioral and neurochemical characterization. J Pharmacol Exp Ther 1997; 282: 561–573.

    CAS  PubMed  Google Scholar 

  12. Volkow ND, Wang GJ, Fowler JS, Ding YS . Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1410–1415.

    Article  CAS  PubMed  Google Scholar 

  13. Riccardi P, Baldwin R, Salomon R, Anderson S, Ansari MS, Li R et al. Estimation of baseline dopamine D(2) receptor occupancy in striatum and extrastriatal regions in humans with positron emission tomography with [(18)F] Fallypride. Biol Psychiatry 2008; 63: 241–244.

    Article  CAS  PubMed  Google Scholar 

  14. Spencer T, Biederman J, Ciccone P, Madras B, Dougherty D, Bonab A et al. A PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short and long-acting orally administered formulations of methylphenidate in adults. Am J Psychiatry 2006; 163: 387–395.

    Article  PubMed  Google Scholar 

  15. Fusar-Poli P, Rubia K, Rossi G, Sartori G, Balottin U . Striatal dopamine transporter alterations in ADHD: pathophysiology or adaptation to psychostimulants? A meta-analysis. Am J Psychiatry 2012; 169: 264–272.

    Article  PubMed  Google Scholar 

  16. Spencer TJ, Madras BK, Fischman AJ, Krause J, La Fougere C . Striatal dopamine transporter binding in adults with ADHD. Am J Psychiatry 2012; 169: 665, author reply 6.

    Article  PubMed  Google Scholar 

  17. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S . The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J. 2001; 1: 152–156.

    Article  CAS  PubMed  Google Scholar 

  18. VanNess SH, Owens MJ, Kilts CD . The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 2005; 6: 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mill J, Asherson P, Craig I, D'Souza UM . Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1). BMC Genet 2005; 6: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Greenwood TA, Kelsoe JR . Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 2003; 82: 511–520.

    Article  CAS  PubMed  Google Scholar 

  21. Inoue-Murayama M, Adachi S, Mishima N, Mitani H, Takenaka O, Terao K et al. Variation of variable number of tandem repeat sequences in the 3'-untranslated region of primate dopamine transporter genes that affects reporter gene expression. Neurosci Lett 2002; 334: 206–210.

    Article  CAS  PubMed  Google Scholar 

  22. Brookes KJ, Neale BM, Sugden K, Khan N, Asherson P, D'Souza UM . Relationship between VNTR polymorphisms of the human dopamine transporter gene and expressionin post-mortem midbrain tissue. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 1070–1078.

    Article  CAS  PubMed  Google Scholar 

  23. Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK et al. Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. Neuropsychopharmacology 2011; 36: 1644–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou Y, Michelhaugh SK, Schmidt CJ, Liu JS, Bannon MJ, Lin Z . Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addict Biol, advance online publication, 26 October 2011; doi:10.1111/j.1369-1600.2011.00391.x (e-pub ahead of print).

  25. Mill J, Asherson P, Browes C, D'Souza U, Craig I . Expression of the dopamine transporter gene is regulated by the 3'UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet 2002; 114: 975–979.

    Article  PubMed  Google Scholar 

  26. Brown AB, Biederman J, Valera EM, Doyle AE, Bush G, Spencer T et al. Effect of dopamine transporter gene (SLC6A3) variation on dorsal anterior cingulate function in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 365–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paloyelis Y, Asherson P, Mehta MA, Faraone SV, Kuntsi J . DAT1 and COMT effects on delay discounting and trait impulsivity in male adolescents with attention deficit/hyperactivity disorder and healthy controls. Neuropsychopharmacology 2010; 35: 2414–2426.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Scherk H, Backens M, Schneider-Axmann T, Kraft S, Kemmer C, Usher J et al. Dopamine transporter genotype influences N-acetyl-aspartate in the left putamen. World J Biol Psychiatry 2009; 10 (4 Pt 2): 524–530.

    Article  PubMed  Google Scholar 

  29. Rommelse NN, Altink ME, Arias-Vasquez A, Buschgens CJ, Fliers E, Faraone SV et al. A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1536–1546.

    Article  CAS  PubMed  Google Scholar 

  30. Shumay E, Chen J, Fowler JS, Volkow ND . Genotype and ancestry modulate brain's DAT availability in healthy humans. PLoS One 2011; 6: e22754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spencer TJ, Biederman J, Faraone SV, Madras BK, Bonab AA, Dougherty DD et al. Functional genomics of attention-deficit/hyperactivity disorder (ADHD) Risk alleles on dopamine transporter binding in ADHD and healthy control subjects. Biol Psychiatry 2012.

  32. Costa A, Riedel M, Muller U, Moller HJ, Ettinger U . Relationship between SLC6A3 genotype and striatal dopamine transporter availability: a meta-analysis of human single photon emission computed tomography studies. Synapse 2011; 65: 998–1005.

    Article  CAS  PubMed  Google Scholar 

  33. Lynch WJ, Roth ME, Carroll ME . Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 2002; 164: 121–137.

    Article  CAS  PubMed  Google Scholar 

  34. Cheon KA, Ryu YH, Kim JW, Cho DY . The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsychopharmacol 2005; 15: 95–101.

    Article  CAS  PubMed  Google Scholar 

  35. DerSimonian R, Laird N . Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.

    Article  CAS  PubMed  Google Scholar 

  36. Higgins JP, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hedges LV, Olkin I . Statistical Methods for Meta-Analysis. Academic Press: Orlando, 1985 p 369, ill.; 24 cm. p.

    Google Scholar 

  38. Hunter JE, Schmidt FL . Methods of Neta-Analysis: Correcting Error and Bias in Research Findings. Sage Publications: Newbury Park, CA, 1990 p 592.

    Google Scholar 

  39. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. Br Med J 1997; 315: 629–634.

    Article  CAS  Google Scholar 

  40. van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M et al. Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 2005; 46: 745–751.

    CAS  PubMed  Google Scholar 

  41. Jacobsen LK, Staley JK, Zoghbi SS, Seibyl JP, Kosten TR, Innis RB et al. Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry 2000; 157: 1700–1703.

    Article  CAS  PubMed  Google Scholar 

  42. Martinez D, Gelernter J, Abi-Dargham A, van Dyck CH, Kegeles L, Innis RB et al. The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 2001; 24: 553–560.

    Article  CAS  PubMed  Google Scholar 

  43. Lynch DR, Mozley PD, Sokol S, Maas NM, Balcer LJ, Siderowf AD . Lack of effect of polymorphisms in dopamine metabolism related genes on imaging of TRODAT–1 in striatum of asymptomatic volunteers and patients with Parkinson's disease. Mov Disord 2003; 18: 804–812.

    Article  PubMed  Google Scholar 

  44. Kaufman MJ, Madras BK . Distribution of cocaine recognition sites in monkey brain: II. Ex vivo autoradiography with [3H]CFT and [125I]RTI–55. Synapse 1992; 12: 99–111.

    Article  CAS  PubMed  Google Scholar 

  45. Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L . Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 2005; 57: 229–238.

    Article  CAS  PubMed  Google Scholar 

  46. Madras BK, Gracz LM, Fahey MA, Elmaleh D, Meltzer PC, Liang AY et al. Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson's diseased brain. Synapse 1998; 29: 116–127.

    Article  CAS  PubMed  Google Scholar 

  47. Fischman AJ, Bonab AA, Babich JW, Palmer EP, Alpert NM, Elmaleh DR et al. Rapid detection of Parkinson's disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse 1998; 29: 128–141.

    Article  CAS  PubMed  Google Scholar 

  48. Abi-Dargham A, Gandelman MS, DeErausquin GA, Zea-Ponce Y, Zoghbi SS, Baldwin RM et al. SPECT imaging of dopamine transporters in human brain with iodine–123-fluoroalkyl analogs of beta-CIT. J Nucl Med 1996; 37: 1129–1133.

    CAS  PubMed  Google Scholar 

  49. Mozley PD, Kim HJ, Gur RC, Tatsch K, Muenz LR, McElgin WT et al. Iodine–123-IPT SPECT imaging of CNS dopamine transporters: nonlinear effects of normal aging on striatal uptake values. J Nucl Med 1996; 37: 1965–1970.

    CAS  PubMed  Google Scholar 

  50. Kung MP, Stevenson DA, Plossl K, Meegalla SK, Beckwith A, Essman WD et al. [99mTc]TRODAT–1: a novel technetium–99 m complex as a dopamine transporter imaging agent. Eur J Nucl Med 1997; 24: 372–380.

    CAS  PubMed  Google Scholar 

  51. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K, Ackenheil M . Stimulant-like action of nicotine on striatal dopamine transporter in the brain of adults with attention deficit hyperactivity disorder. Int J Neuropsychopharmacol 2002; 5: 111–113.

    Article  CAS  PubMed  Google Scholar 

  52. D'Souza UM, Craig IW . Functional polymorphisms in dopamine and serotonin pathway genes. Hum Mutat 2006; 27: 1–13.

    Article  CAS  PubMed  Google Scholar 

  53. Hahn MK, Blakely RD . The functional impact of SLC6 transporter genetic variation. Annu Rev Pharmacol Toxicol 2007; 47: 401–441.

    Article  CAS  PubMed  Google Scholar 

  54. Sanyal A, Lajoie BR, Jain G, Dekker J . The long-range interaction landscape of gene promoters. Nature 2012; 489: 109–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller GM, Madras BK . Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002; 7: 44–55.

    Article  CAS  PubMed  Google Scholar 

  56. Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP . The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 2001; 79: 1033–1038.

    Article  CAS  PubMed  Google Scholar 

  57. D'Souza UM, Russ C, Tahir E, Mill J, McGuffin P, Asherson PJ et al. Functional effects of a tandem duplication polymorphism in the 5'flanking region of the DRD4 gene. Biol Psychiatry 2004; 56: 691–697.

    Article  CAS  PubMed  Google Scholar 

  58. Paloyelis Y, Mehta MA, Faraone SV, Asherson P, Kuntsi J . Striatal sensitivity during reward processing in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2012; 51: 722–32 e9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hoogman M, Onnink M, Cools R, Aarts E, Kan C, Arias Vasquez A et al. The dopamine transporter haplotype and reward-related striatal responses in adult ADHD. Eur Neuropsychopharmacol 2013; 23: 469–478.

    Article  CAS  PubMed  Google Scholar 

  60. Franke B, Hoogman M, Arias Vasquez A, Heister JG, Savelkoul PJ, Naber M et al. Association of the dopamine transporter (SLC6A3/DAT1) gene 9–6 haplotype with adult ADHD. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1576–1579.

    Article  CAS  PubMed  Google Scholar 

  61. Loder MK, Melikian HE . The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem 2003; 278: 22168–22174.

    Article  CAS  PubMed  Google Scholar 

  62. Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1345–1354.

    Article  CAS  PubMed  Google Scholar 

  63. Lasky-Su J, Anney RJ, Neale BM, Franke B, Zhou K, Maller JB et al. Genome-wide association scan of the time to onset of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1355–1358.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Markunas CA, Quinn KS, Collins AL, Garrett ME, Lachiewicz AM, Sommer JL et al. Genetic variants in SLC9A9 are associated with measures of attention-deficit/hyperactivity disorder symptoms in families. Psychiatr Genet 2010; 20: 73–81.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Franke B, Neale BM, Faraone SV . Genome-wide association studies in ADHD. Hum Genet 2009; 126: 13–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd RD et al. Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 898–905 e3.

    Article  PubMed  PubMed Central  Google Scholar 

  67. de Silva MG, Elliott K, Dahl HH, Fitzpatrick E, Wilcox S, Delatycki M et al. Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J Med Genet 2003; 40: 733–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 2008; 321: 218–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 884–897.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang-James Y, Dasbanerjee T, Sagvolden T, Middleton FA, Faraone SV . SLC9A9 mutations, gene expression, and protein-protein interactions in rat models of attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156: 835–843.

    Article  CAS  PubMed Central  Google Scholar 

  71. Zhang-James Y, Middleton FA, Sagvolden T, Faraone SV . Differential expression of SLC9A9 and interacting molecules in the hippocampus of rat models for attention deficit/hyperactivity disorder. Dev Neurosci 2012; 34: 218–227.

    Article  CAS  PubMed  Google Scholar 

  72. Methner DN, Mayfield RD . Ethanol alters endosomal recycling of human dopamine transporters. J Biol Chem 2010; 285: 10310–10317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pandolfo P, Machado NJ, Kofalvi A, Takahashi RN, Cunha RA . Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur Neuropsychopharmacol 2013; 23: 317–328.

    Article  CAS  PubMed  Google Scholar 

  74. Roessner V, Sagvolden T, Dasbanerjee T, Middleton FA, Faraone SV, Walaas SI et al. Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not to the same extent in one of the attention-deficit/hyperactivity disorder inattentive type. Neuroscience 2010; 167: 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  75. Krause J, Dresel SH, Krause KH, La Fougere C, Zill P, Ackenheil M . Striatal dopamine transporter availability and DAT–1 gene in adults with ADHD: no higher DAT availability in patients with homozygosity for the 10-repeat allele. World J Biol Psychiatry 2006; 7: 152–157.

    Article  PubMed  Google Scholar 

  76. Sanchez-Mora C, Ribases M, Casas M, Bayes M, Bosch R, Fernandez-Castillo N et al. Exploring DRD4 and its interaction with SLC6A3 as possible risk factors for adult ADHD: a meta-analysis in four European populations. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 600–612.

    Article  CAS  PubMed  Google Scholar 

  77. Hawi Z, Kent L, Hill M, Anney RJ, Brookes KJ, Barry E et al. ADHD and DAT1: further evidence of paternal over-transmission of risk alleles and haplotype. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 97–102.

    CAS  PubMed  Google Scholar 

  78. Altink ME, Slaats-Willemse DI, Rommelse NN, Buschgens CJ, Fliers EA, Arias-Vasquez A et al. Effects of maternal and paternal smoking on attentional control in children with and without ADHD. Eur Child Adolesc Psychiatry 2009; 18: 465–475.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Guindalini C, Martins RC, Andersen ML, Tufik S . Influence of genotype on dopamine transporter availability in human striatum and sleep architecture. Psychiatry Res 2010; 179: 238–240.

    Article  CAS  PubMed  Google Scholar 

  80. Shumay E, Fowler JS, Volkow ND . Genomic features of the human dopamine transporter gene and its potential epigenetic states: implications for phenotypic diversity. PLoS One 2010; 5: e11067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW et al. Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 1999; 409: 38–56.

    Article  CAS  PubMed  Google Scholar 

  82. Cruz-Muros I, Afonso-Oramas D, Abreu P, Perez-Delgado MM, Rodriguez M, Gonzalez-Hernandez T . Aging effects on the dopamine transporter expression and compensatory mechanisms. Neurobiol Aging 2009; 30: 973–986.

    Article  CAS  PubMed  Google Scholar 

  83. Tani S, Kuraku S, Sakamoto H, Inoue K, Kusakabe R . Developmental expression and evolution of muscle-specific microRNAs conserved in vertebrates. Evol Dev 2013; 15: 293–304.

    Article  CAS  PubMed  Google Scholar 

  84. Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH et al. New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. Genome Res 2009; 19: 1175–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Drgon T, Lin Z, Wang GJ, Fowler J, Pablo J, Mash DC et al. Common human 5' dopamine transporter (SLC6A3) haplotypes yield varying expression levels in vivo. Cell Mol Neurobiol 2006; 26: 875–889.

    Article  CAS  PubMed  Google Scholar 

  86. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012; 337: 1190–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Contin M, Martinelli P, Mochi M, Albani F, Riva R, Scaglione C et al. Dopamine transporter gene polymorphism, spect imaging, and levodopa response in patients with Parkinson disease. Clin Neuropharmacol 2004; 27: 111–115.

    Article  CAS  PubMed  Google Scholar 

  88. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG et al. Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 2000; 22: 133–139.

    Article  CAS  PubMed  Google Scholar 

  89. Gunnar MR, Brodersen L, Krueger K, Rigatuso J . Dampening of adrenocortical responses during infancy: Normative changes and individual differences. Child Dev 1996; 67: 877–889.

    Article  CAS  PubMed  Google Scholar 

  90. Lafuente A, Bernardo M, Mas S, Crescenti A, Aparici M, Gasso P et al. Dopamine transporter (DAT) genotype (VNTR) and phenotype in extrapyramidal symptoms induced by antipsychotics. Schizophr Res 2007; 90: 115–122.

    Article  PubMed  Google Scholar 

  91. van de, Giessen E, de Win MM, Tanck MW, van den Brink W, Baas F et al. Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med 2009; 50: 45–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S V Faraone.

Ethics declarations

Competing interests

In the past year, Dr Faraone received consulting income and/or research support from Akili Interactive Labs, VAYA Pharma and SynapDx and research support from the National Institutes of Health (NIH). His institution is seeking a patent for the use of sodium–hydrogen exchange inhibitors in the treatment of ADHD. In previous years, he received consulting fees or was on Advisory Boards or participated in continuing medical education programs sponsored by: Shire, Alcobra, Otsuka, McNeil, Janssen, Novartis, Pfizer and Eli Lilly. Dr Faraone receives royalties from books published by Guilford Press: Straight Talk about Your Child’s Mental Health and Oxford University Press: Schizophrenia: The Facts. In the last two years, Dr Thomas Spencer has been an Advisor or on an Advisory Board of the following sources: Alcobra, Ironshore, the Department of Defense and the National Institute of Mental Health. In the last two years, Dr Thomas Spencer has received research support from of the following sources: Shire Laboratories Inc, Cephalon, Eli Lilly & Company, Janssen, McNeil Pharmaceutical, Novartis Pharmaceuticals and the Department of Defense. In previous years, Dr Thomas Spencer has received research support from, has been a speaker for or on a speaker bureau or has been an Advisor or on an Advisory Board of the following sources: Shire Laboratories, Inc, Eli Lilly & Company, Glaxo-Smith Kline, Janssen Pharmaceutical, McNeil Pharmaceutical, Novartis Pharmaceuticals, Cephalon, Pfizer and the National Institute of Mental Health. Dr Spencer receives research support from Royalties and Licensing fees on copyrighted ADHD scales through MGH Corporate Sponsored Research and Licensing. Dr Spencer has a US Patent Application pending (Provisional Number 61/233686), through MGH corporate licensing, on a method to prevent stimulant abuse. Bertha K Madras, PhD, has the following financial interests: She is patent holder of 19 patents, including 11C- or 131I-altropane, other DAT imaging agents and DAT inhibitors, the majority of which are licensed to Alseres. Alseres licensed Altropane from Harvard University; Navidea Biopharmaceuticals, a radiopharmaceutical developer, is evaluating an option to license Altropane from Alseres. In the past year, she has received consulting fees from Prexa Pharmaceuticals, NIDA, research support from NIDA, has been an advisor to NIDA Council, CDC, and a non-reimbursed advisor to the Hilton Foundation and Convecta. In 2012, she received speaker fees from the following sources: McGill University, Dartmouth University, BOLD Coalition, Student Assistant Services and royalties as editor or author of four books, from Cold Spring Harbor Press, Neuroscience-Net, American Psychological Association. Joseph Biederman, MD is currently receiving research support from the following sources: Elminda, Janssen, McNeil, and Shire. In 2010, Dr Joseph Biederman did not receive any outside income. In 2009, Dr Joseph Biederman received a speaker’s fee from the following sources: Fundacion Areces, Medice Pharmaceuticals and the Spanish Child Psychiatry Association. In previous years, Dr Joseph Biederman received research support, consultation fees or speaker’s fees for/from the following additional sources: Abbott, Alza, AstraZeneca, Bristol Myers Squibb, Celltech, Cephalon, Eli Lilly and Co., Esai, Forest, Glaxo, Gliatech, Janssen, McNeil, Merck, NARSAD, NIDA, New River, NICHD, NIMH, Novartis, Noven, Neurosearch, Organon, Otsuka, Pfizer, Pharmacia, The Prechter Foundation, Shire, The Stanley Foundation, UCB Pharma, Inc. and Wyeth. Yanli Zhang-James, MD, PhD, does not have any conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faraone, S., Spencer, T., Madras, B. et al. Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol Psychiatry 19, 880–889 (2014). https://doi.org/10.1038/mp.2013.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.126

Keywords

This article is cited by

Search

Quick links