Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia

A Corrigendum to this article was published on 26 March 2013

Abstract

We examined the influence of the genome-wide significant schizophrenia risk variant rs1625579 near the microRNA (miRNA)-137 (MIR137) gene on well-established sources of phenotypic variability in schizophrenia: age-at-onset of psychosis and brain structure. We found that the MIR137 risk genotype strongly predicts an earlier age-at-onset of psychosis across four independently collected samples of patients with schizophrenia (n=510; F1,506=17.7, P=3.1 × 10−5). In an imaging-genetics subsample that included additional matched controls (n=213), patients with schizophrenia who had the MIR137 risk genotype had reduced white matter integrity (F3,209=13.6, P=3.88 × 10−8) throughout the brain as well as smaller hippocampi and larger lateral ventricles; the brain structure of patients who were carriers of the protective allele was no different from healthy control subjects on these neuroimaging measures. Our findings suggest that MIR137 substantially influences variation in phenotypes that are thought to have an important role in clinical outcome and treatment response. Finally, the possible consequences of genetic risk factors may be distinct in patients with schizophrenia compared with healthy controls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. DeLisi LE . The significance of age of onset for schizophrenia. Schizophr Bull 1992; 18: 209–215.

    Article  CAS  PubMed  Google Scholar 

  2. Carpenter WT, Kirkpatrick B . The heterogeneity of the long-term course of schizophrenia. Schizophr Bull 1988; 14: 645.

    Article  PubMed  Google Scholar 

  3. Shenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen K, Rajewsky N . The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8: 93–103.

    Article  CAS  PubMed  Google Scholar 

  5. Kwon E, Wang W, Tsai LH . Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol Psychiatry 2013; 18: 11–12.

    Article  CAS  PubMed  Google Scholar 

  6. Kim AH, Parker EK, Williamson V, McMichael GO, Fanous AH, Vladimirov VI . Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137. Schizophr Res 2012; 141: 60–64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci USA 2012; 109: 3125–3130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 2007; 317: 1220–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM . The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 2007; 131: 136–145.

    Article  CAS  PubMed  Google Scholar 

  10. Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY . miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 2008; 11: 1137–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009; 326: 1549–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 2010; 28: 1060–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 2010; 189: 127–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun G, Ye P, Murai K, Lang MF, Li S, Zhang H et al. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2011; 2: 529.

    Article  PubMed  Google Scholar 

  15. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  17. Hare E, Glahn DC, Dassori A, Raventos H, Nicolini H, Ontiveros A et al. Heritability of age of onset of psychosis in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 298–302.

    PubMed  Google Scholar 

  18. Brans RG, van Haren NE, van Baal GC, Schnack HG, Kahn RS, Hulshoff Pol HE . Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Arch Gen Psychiatry 2008; 65: 1259–1268.

    Article  PubMed  Google Scholar 

  19. Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry 2001; 49: 487–499.

    Article  CAS  PubMed  Google Scholar 

  20. Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS et al. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 2005; 62: 361–370.

    Article  CAS  PubMed  Google Scholar 

  21. Mitelman SA, Canfield EL, Brickman AM, Shihabuddin L, Hazlett EA, Buchsbaum MS . Progressive ventricular expansion in chronic poor-outcome schizophrenia. Cogn Behav Neurol 2010; 23: 85–88.

    Article  PubMed  Google Scholar 

  22. Suvisaari JM, Haukka J, Tanskanen A, Lonnqvist JK . Age at onset and outcome in schizophrenia are related to the degree of familial loading. Br J Psychiatry 1998; 173: 494–500.

    Article  CAS  PubMed  Google Scholar 

  23. Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M . Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 2003; 60: 585–594.

    Article  PubMed  Google Scholar 

  24. Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA . Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 2006; 188: 510–518.

    Article  PubMed  Google Scholar 

  25. Ehrlich S, Brauns S, Yendiki A, Ho BC, Calhoun V, Schulz SC et al. Associations of cortical thickness and cognition in patients with schizophrenia and healthy controls. Schizophr Bull 2012; 38: 1050–1062.

    Article  PubMed  Google Scholar 

  26. Voineskos AN, Foussias G, Lerch JP, Felsky D, Rajji TK, Lobaugh NJ et al. Neuroimaging Evidence for the Schizophrenia Deficit Subtype. Arch Gen Psychiatry, advance online publication, 6 March 2013 (in press).

  27. First MB, Gibbon M, Williams JBW . Strucutured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-P), version 2 Biometrics Research: New York, 1995.

    Google Scholar 

  28. Wechsler D . Wechsler Test of Adult Reading: WTAR. Psychological Corporation: San Antonio, USA, 2001.

  29. Folstein MF, Folstein SE, McHugh PR . ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189–198.

    Article  CAS  PubMed  Google Scholar 

  30. Miller MD, Paradis CF, Houck PR, Mazumdar S, Stack JA, Rifai AH et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res 1992; 41: 237–248.

    Article  CAS  PubMed  Google Scholar 

  31. Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H et al. Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiol Aging 2008; 29: 23–30.

    Article  PubMed  Google Scholar 

  32. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC . Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 2005; 15: 995–1001.

    Article  PubMed  Google Scholar 

  33. Patenaude B, Smith SM, Kennedy DN, Jenkinson MA . Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011; 56: 907–922.

    Article  PubMed  Google Scholar 

  34. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002; 17: 479–489.

    Article  PubMed  Google Scholar 

  35. Sled JG, Zijdenbos AP, Evans AC . A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17: 87–97.

    Article  CAS  PubMed  Google Scholar 

  36. Zijdenbos AP, Forghani R, Evans AC . Automatic ‘pipeline’ analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 2002; 21: 1280–1291.

    Article  PubMed  Google Scholar 

  37. Tohka J, Zijdenbos A, Evans A . Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 2004; 23: 84–97.

    Article  PubMed  Google Scholar 

  38. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 2005; 27: 210–221.

    Article  PubMed  Google Scholar 

  39. MacDonald D, Kabani N, Avis D, Evans AC . Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 2000; 12: 340–356.

    Article  CAS  PubMed  Google Scholar 

  40. Lerch JP, Evans AC . Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 2005; 24: 163–173.

    Article  PubMed  Google Scholar 

  41. Zilles K (ed). Native space cortical thickness measurement and the absence of correlation to cerebral volume. Proc. Org Hum Brain Map. Neuroimage: Toronto, 2005.

    Google Scholar 

  42. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: S208–S219.

    Article  PubMed  Google Scholar 

  43. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31: 1487–1505.

    Article  PubMed  Google Scholar 

  44. Lahiri DK, Nurnberger JI . A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991; 19: 5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  46. Kyriakopoulos M, Perez-Iglesias R, Woolley JB, Kanaan RAA, Vyas NS, Barker GJ et al. Effect of age at onset of schizophrenia on white matter abnormalities. Br J Psychiatry 2009; 195: 346–353.

    Article  PubMed  Google Scholar 

  47. Baron RM, Kenny DA . The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 1986; 51: 1173–1182.

    Article  CAS  PubMed  Google Scholar 

  48. Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H et al. The international HapMap project. Nature 2003; 426: 789–796.

    Article  CAS  Google Scholar 

  49. Hollis C . Adult outcomes of child- and adolescent-onset schizophrenia: Diagnostic stability and predictive validity. Am J Psychiatry 2000; 157: 1652–1659.

    Article  CAS  PubMed  Google Scholar 

  50. Jeste DV, Harris MJ, Krull A, Kuck J, McAdams LA, Heaton R . Clinical and neuropsychological characteristics of patients with late-onset schizophrenia. Am J Psychiatry 1995; 152: 722–730.

    Article  CAS  PubMed  Google Scholar 

  51. Genovese CR, Lazar NA, Nichols T . Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002; 15: 870–878.

    Article  PubMed  Google Scholar 

  52. Braff DL, Freedman R, Schork NJ, Gottesman II . Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull 2007; 33: 21–32.

    Article  PubMed  Google Scholar 

  53. Crow TJ . Molecular pathology of schizophrenia: more than one disease process? Br Med J 1980; 280: 66–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitelman SA, Newmark RE, Torosjan Y, Chu KW, Brickman AM, Haznedar MM et al. White matter fractional anisotropy and outcome in schizophrenia. Schizophr Res 2006; 87: 138–159.

    Article  PubMed  Google Scholar 

  55. Olde Loohuis NF, Kos A, Martens GJ, Van Bokhoven H, Nadif Kasri N, Aschrafi A . MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 2012; 69: 89–102.

    Article  CAS  PubMed  Google Scholar 

  56. Beveridge N, Gardiner E, Carroll A, Tooney P, Cairns M . Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2009; 15: 1176–1189.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ . Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 2011; 69: 180–187.

    Article  CAS  PubMed  Google Scholar 

  58. Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM . Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry 2011; 69: 188–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller BH, Wahlestedt C . MicroRNA dysregulation in psychiatric disease. Brain Res 2010; 1338: 89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Geekiyanage H, Chan C . MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer's disease. J Neurosci 2011; 31: 14820–14830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Geekiyanage H, Jicha GA, Nelson PT, Chan C . Blood serum miRNA: Non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 2012; 235: 491–496.

    Article  CAS  PubMed  Google Scholar 

  62. Willemsen MH, Valles A, Kirkels LA, Mastebroek M, Olde Loohuis N, Kos A et al. Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J Med Genet 2011; 48: 810–818.

    Article  CAS  PubMed  Google Scholar 

  63. Sun J, Gong X, Purow B, Zhao Z . Uncovering microRNA and transcription factor mediated regulatory networks in glioblastoma. PLoS Comput Biol 2012; 8: e1002488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 2010; 67: 939.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Matute C . Calcium dyshomeostasis in white matter pathology. Cell calcium 2010; 47: 150–157.

    Article  CAS  PubMed  Google Scholar 

  66. McTigue DM, Tripathi RB . The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of neurochemistry 2008; 107: 1–19.

    Article  CAS  PubMed  Google Scholar 

  67. Emery B . Regulation of oligodendrocyte differentiation and myelination. Science Signalling 2010; 330: 779.

    CAS  Google Scholar 

  68. Green M, Cairns M, Wu J, Dragovic M, Jablensky A, Tooney P et al. Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Mol Psychiatry, advance online publication, 26 June 2012; doi:10.1038/mp.2012.84 (e-pub ahead of print).

    Article  PubMed  Google Scholar 

  69. Cummings E, Donohoe G, Hargreaves A, Moore S, Fahey C, Dinan T et al. Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137. Neurosci Lett 2013; 532: 33–38.

    Article  CAS  PubMed  Google Scholar 

  70. Meyer-Lindenberg A, Weinberger DR . Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006; 7: 818–827.

    Article  CAS  PubMed  Google Scholar 

  71. Zipursky RB, Lambe EK, Kapur S, Mikulis DJ . Cerebral gray matter volume deficits in first episode psychosis. Arch Gen Psychiatry 1998; 55: 540–546.

    Article  CAS  PubMed  Google Scholar 

  72. Lim KO, Harris D, Beal M, Hoff AL, Minn K, Csernansky JG et al. Gray matter deficits in young onset schizophrenia are independent of age of onset. Biol Psychiatry 1996; 40: 4–13.

    Article  CAS  PubMed  Google Scholar 

  73. Marsh L, Harris D, Lim KO, Beal M, Hoff AL, Minn K et al. Structural magnetic resonance imaging abnormalities in men with severe chronic schizophrenia and an early age at clinical onset. Arch Gen Psychiatry 1997; 54: 1104–1112.

    Article  CAS  PubMed  Google Scholar 

  74. DeLisi LE, Hoff AL, Schwartz JE, Shields GW, Halthore SN, Gupta SM et al. Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry 1991; 29: 159–175.

    Article  CAS  PubMed  Google Scholar 

  75. Kumra S, Ashtari M, McMeniman M, Vogel J, Augustin R, Becker DE et al. Reduced frontal white matter integrity in early-onset schizophrenia: a preliminary study. Biol Psychiatry 2004; 55: 1138–1145.

    Article  PubMed  Google Scholar 

  76. Giedd JN, Jeffries NO, Blumenthal J, Castellanos F, Vaituzis AC, Fernandez T et al. Childhood-onset schizophrenia: progressive brain changes during adolescence. Biol Psychiatry 1999; 46: 892–898.

    Article  CAS  PubMed  Google Scholar 

  77. Hollis C . Child and adolescent (juvenile onset) schizophrenia. A case control study of premorbid developmental impairments. Br J Psychiatry 1995; 166: 489–495.

    Article  CAS  PubMed  Google Scholar 

  78. Vourdas A, Pipe R, Corrigall R, Frangou S . Increased developmental deviance and premorbid dysfunction in early onset schizophrenia. Schizophr Res 2003; 62: 13–22.

    Article  PubMed  Google Scholar 

  79. Rajji TK, Ismail Z, Mulsant BH . Age at onset and cognition in schizophrenia: meta-analysis. Br J Psychiatry 2009; 195: 286–293.

    Article  CAS  PubMed  Google Scholar 

  80. Hollis C . Adult outcomes of child- and adolescent-onset schizophrenia: diagnostic stability and predictive validity. Am J Psychiatry 2000; 157: 1652–1659.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research Clinician Scientist Award (ANV); NARSAD (ANV, TKR), Ontario Mental Health Foundation (ANV) and the CAMH and the CAMH Foundation thanks to the Kimel Family, Koerner New Scientist Award and Paul E Garfinkel New Investigator Catalyst Award. We also like to thank Mr Gabriel Oh for manuscript comments. Mr Lett, Dr Kennedy, and Dr Voineskos had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. No sponsor or funder had any role in the design and conduct of the study; collection, management, analysis and interpretation of the data; and preparation, review or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A N Voineskos.

Ethics declarations

Competing interests

We report the following conflicts of interest: JAL has received research funding or is a member of the advisory board of Allon, Alkermes Bioline, GlaxoSmithKline Intracellular Therapies, Lilly, Merck, Novartis, Pfizer, Pierre Fabre, Psychogenics, F Hoffmann-La Roche LTD, Sepracor (Sunovion) and Targacept. HYM reports having received research funding or is a member of the advisory board of Novartis, Janssen, ACADIA, TEVA, Lilly, Jazz Pharmaceuticals, Sunovion, Dainippon–Sumitomo, Envivo. JLK has been a consultant to GlaxoSmithKline, Sanofi-Aventis and Dainippon–Sumitomo. BHM has received travel support from Roche.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lett, T., Chakavarty, M., Felsky, D. et al. The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry 18, 443–450 (2013). https://doi.org/10.1038/mp.2013.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.17

Keywords

This article is cited by

Search

Quick links