Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients

Abstract

One of the prevailing hypotheses suggests schizophrenia as a neurodevelopmental disorder, involving dysfunction of dopaminergic and glutamatergic systems. Accumulating evidence suggests mitochondria as an additional pathological factor in schizophrenia. An attractive model to study processes related to neurodevelopment in schizophrenia is reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and differentiating them into different neuronal lineages. iPSCs from three schizophrenia patients and from two controls were reprogrammed from hair follicle keratinocytes, because of their accessibility and common ectodermal origin with neurons. iPSCs were differentiated into Pax6+/Nestin+ neural precursors and then further differentiated into β3-Tubulin+/tyrosine hydroxylase+/DAT+ dopaminergic neurons. In addition, iPSCs were differentiated through embryonic bodies into β3-Tubulin+/Tbox brain1+ glutamatergic neurons. Schizophrenia-derived dopaminergic cells showed severely impaired ability to differentiate, whereas glutamatergic cells were unable to maturate. Mitochondrial respiration and its sensitivity to dopamine-induced inhibition were impaired in schizophrenia-derived keratinocytes and iPSCs. Moreover, we observed dissipation of mitochondrial membrane potential (Δψm) and perturbations in mitochondrial network structure and connectivity in dopaminergic along the differentiation process and in glutamatergic cells. Our data unravel perturbations in neural differentiation and mitochondrial function, which may be interconnected, and of relevance to dysfunctional neurodevelopmental processes in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Brown AS . The environment and susceptibility to schizophrenia. Prog Neurobiol 2011; 93: 23–58.

    Article  CAS  PubMed  Google Scholar 

  2. Rapoport JL, Giedd JN, Gogtay N . Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 2012; 17: 1228–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faludi G, Mirnics K . Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci 2011; 29: 305–309.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bauer M, Praschak-Rieder N, Kasper S, Willeit M . Is dopamine neurotransmission altered in prodromal schizophrenia? A review of the evidence. Curr Pharm Des 2012; 18: 1568–1579.

    Article  CAS  PubMed  Google Scholar 

  5. Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC et al. Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis. Mol Psychiatry 2011; 16: 67–75.

    Article  CAS  PubMed  Google Scholar 

  6. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 2010; 13: 76–83.

    Article  CAS  PubMed  Google Scholar 

  7. Howes OD, Kapur S . The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 2009; 35: 549–562.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Finlay JM . Mesoprefrontal dopamine neurons and schizophrenia: role of developmental abnormalities. Schizophr Bull 2001; 27: 431–442.

    Article  CAS  PubMed  Google Scholar 

  9. Laruelle M, Kegeles LS, Abi-Dargham A . Glutamate, dopamine, and schizophrenia. Ann N Y Acad Sci 2003; 1003: 138–158.

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Okamoto K, Hayashi Y, Sheng M . The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004; 119: 873–887.

    Article  CAS  PubMed  Google Scholar 

  11. Sequeira A, Martin MV, Rollins B, Moon EA, Bunney WE, Macciardi F et al. Mitochondrial mutations and polymorphisms in psychiatric disorders. Front Genet 2012; 3: 103.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 2012; 13: 293–307.

    Article  CAS  PubMed  Google Scholar 

  13. Marazziti D, Baroni S, Picchetti M, Landi P, Silvestri S, Vatteroni E et al. Psychiatric disorders and mitochondrial dysfunctions. Eur Rev Med Pharmacol Sci 2012; 16: 270–275.

    CAS  PubMed  Google Scholar 

  14. Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D . Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 2011; 69: 980–988.

    Article  CAS  PubMed  Google Scholar 

  15. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 2009; 11: 958–966.

    Article  CAS  PubMed  Google Scholar 

  16. Greenwood SM, Mizielinska SM, Frenguelli BG, Harvey J, Connolly CN . Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J Biol Chem 2007; 282: 26235–26244.

    Article  CAS  PubMed  Google Scholar 

  17. White RJ, Reynolds IJ . Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci 1996; 16: 5688–5697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcia O, Almeida A, Massieu L, Bolanos JP . Increased mitochondrial respiration maintains the mitochondrial membrane potential and promotes survival of cerebellar neurons in an endogenous model of glutamate receptor activation. J Neurochem 2005; 92: 183–190.

    Article  CAS  PubMed  Google Scholar 

  19. Ben-Shachar D . The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm 2009; 116: 1383–1396.

    Article  CAS  PubMed  Google Scholar 

  20. Brenner-Lavie H, Klein E, Ben-Shachar D . Mitochondrial complex I as a novel target for intraneuronal DA: modulation of respiration in intact cells. Biochem Pharmacol 2009; 78: 85–95.

    Article  CAS  PubMed  Google Scholar 

  21. Ben-Shachar D, Zuk R, Gazawi H, Ljubuncic P . Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 2004; 67: 1965–1974.

    Article  CAS  PubMed  Google Scholar 

  22. Ben-Shachar D . Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 2002; 83: 1241–1251.

    Article  CAS  PubMed  Google Scholar 

  23. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brennand KJ, Gage FH . Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 2011; 29: 1915–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A et al. Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 2010; 3: 785–798.

    Article  CAS  PubMed  Google Scholar 

  26. Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011; 25: 88–103.

    Article  CAS  PubMed  Google Scholar 

  27. Brennand KJ, Simone A, Tran N, Gage FH . Modeling psychiatric disorders at the cellular and network levels. Mol Psychiatry 2012; 17: 1239–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paulsen BD, Maciel RD, Galina A, da Silveira MS, Souza CD, Drummond H et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant 2011; 21: 1547–1559.

    Article  Google Scholar 

  29. da Silveira Paulsen B, Souza da Silveira M, Galina A, Kastrup Rehen S . Pluripotent stem cells as a model to study oxygen metabolism in neurogenesis and neurodevelopmental disorders. Arch Biochem Biophys 2013; 534: 3–10.

    Article  CAS  Google Scholar 

  30. Mortimer AM . Symptom rating scales and outcome in schizophrenia. Br J Psychiatry Suppl 2007; 50: s7–14.

    Article  PubMed  Google Scholar 

  31. Petit I, Kesner NS, Karry R, Robicsek O, Aberdam E, Muller FJ et al. Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders. Stem Cell Res 2012; 8: 134–140.

    Article  CAS  PubMed  Google Scholar 

  32. Somers A, Jean J-C, Sommer CA, Omari A, Ford CC, Mills JA et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 2010; 28: 1728–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  34. Muller FJ, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP et al. A bioinformatic assay for pluripotency in human cells. Nat Methods 2011; 8: 315–317.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Williams R, Schuldt B, Muller FJ . A guide to stem cell identification: progress and challenges in system-wide predictive testing with complex biomarkers. BioEssays 2011; 33: 880–890.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park JW et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One 2010; 5: e11853.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L . Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009; 27: 275–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yaniv SP, Lucki A, Klein E, Ben-Shachar D . Dexamethasone enhances the norepinephrine-induced ERK/MAPK intracellular pathway possibly via dysregulation of the alpha2-adrenergic receptor: implications for antidepressant drug mechanism of action. Eur J Cell Biol 2010; 89: 712–722.

    Article  CAS  PubMed  Google Scholar 

  39. Fekkes D . State-of-the-art of high-performance liquid chromatographic analysis of amino acids in physiological samples. J Chromatogr B 1996; 682: 3–22.

    Article  CAS  Google Scholar 

  40. Brenner-Lavie H, Klein E, Zuk R, Gazawi H, Ljubuncic P, Ben-Shachar D . Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: relevance to dopamine pathology in schizophrenia. Biochim Biophys Acta 2008; 1777: 173–185.

    Article  CAS  PubMed  Google Scholar 

  41. Romero-Ramos M, Vourc’h P, Young HE, Lucas PA, Wu Y, Chivatakarn O et al. Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 2002; 69: 894–907.

    Article  CAS  PubMed  Google Scholar 

  42. Nazor KL, Altun G, Lynch C, Tran H, Harness JV, Slavin I et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 2012; 10: 620–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shalom-Feuerstein R, Serror L, De La Forest Divonne S, Petit I, Aberdam E, Camargo L et al. Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells 2012; 30: 898–909.

    Article  CAS  PubMed  Google Scholar 

  44. Kleinman JE, Law AJ, Lipska BK, Hyde TM, Ellis JK, Harrison PJ et al. Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. Biol Psychiatry 2011; 69: 140–145.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ugrumov MV . Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J Chem Neuroanat 2009; 38: 241–256.

    Article  CAS  PubMed  Google Scholar 

  46. Björklund A, Dunnett SB . Dopamine neuron systems in the brain: an update. Trends Neurosci 2007; 30: 194–202.

    Article  PubMed  Google Scholar 

  47. Kapur S, Remington G . Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry 2001; 50: 873–883.

    Article  CAS  PubMed  Google Scholar 

  48. Schmitt A, Hasan A, Gruber O, Falkai P . Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 2011; 261 (Suppl 2): S150–S154.

    Article  PubMed  Google Scholar 

  49. Dames P, Puff R, Weise M, Parhofer KG, Goke B, Gotz M et al. Relative roles of the different Pax6 domains for pancreatic alpha cell development. BMC Dev Biol 2010; 10: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guinez C, Morelle W, Michalski JC, Lefebvre T . O-GlcNAc glycosylation: a signal for the nuclear transport of cytosolic proteins? Int J Biochem Cell Biol 2005; 37: 765–774.

    Article  CAS  PubMed  Google Scholar 

  51. Lesaffre B, Joliot A, Prochiantz A, Volovitch M . Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish. Neural Dev 2007; 2: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Krupkova O Jr, Loja T, Zambo I, Veselska R . Nestin expression in human tumors and tumor cell lines. Neoplasma 2010; 57: 291–298.

    Article  PubMed  Google Scholar 

  53. Gonzalez-Garza MT, Martinez HR, Caro-Osorio E, Cruz-Vega DE, Hernandez-Torre M, Moreno-Cuevas JE . Differentiation of CD133+ stem cells from amyotrophic lateral sclerosis patients into preneuron cells. Stem Cells Transl Med 2013; 2: 129–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindstrom LH, Iyo M . Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC Psychiatry 2005; 5: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eisenhofer G, Kopin IJ, Goldstein DS . Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004; 56: 331–349.

    Article  CAS  PubMed  Google Scholar 

  56. Johri A, Beal MF . Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Therap 2012; 342: 619–630.

    Article  CAS  Google Scholar 

  57. Trushina E, Nemutlu E, Zhang S, Christensen T, Camp J, Mesa J et al. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One 2012; 7: e32737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Solá S, Morgado AL, Rodrigues CMP . Death receptors and mitochondria: two prime triggers of neural apoptosis and differentiation. Biochim Biophys Acta (BBA) 2013; 1830: 2160–2166.

    Article  Google Scholar 

  59. Ben-Shachar D, Karry R . Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 2008; 3: e3676.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004; 101: 12543–12548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jonas P . The time course of signaling at central glutamatergic synapses. News Physiol Sci 2000; 15: 83–89.

    CAS  PubMed  Google Scholar 

  62. Diamond JS, Jahr CE . Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 1997; 17: 4672–4687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Llado J, Haenggeli C, Maragakis NJ, Snyder EY, Rothstein JD . Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol Cell Neurosci 2004; 27: 322–331.

    Article  CAS  PubMed  Google Scholar 

  64. Brazel CY, Nunez JL, Yang Z, Levison SW . Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 2005; 131: 55–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Alliance for Research on Schizophrenia and Affective Disorders NARSAD, Chief Scientist of the Israeli Ministry of Health and Israel Science Foundation (grant no. 2016809). FJ Müller is supported by the Else Kröner-Fresenius-Stiftung fellowship. We thank G Mostoslavsky (Boston University School of Medicine) for providing the STEMCCA vector, E Suss-Toby for assistance in confocal microscopy experiments, A Greenberg and N Levy for assistance in HPLC studies and I Laevsky for the karyotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Ben-Shachar.

Ethics declarations

Competing interests

The authors declare no conflict of Interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robicsek, O., Karry, R., Petit, I. et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 18, 1067–1076 (2013). https://doi.org/10.1038/mp.2013.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.67

Keywords

This article is cited by

Search

Quick links