Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Copy number variation at 22q11.2: from rare variants to common mechanisms of developmental neuropsychiatric disorders

Abstract

Recently discovered genome-wide rare copy number variants (CNVs) have unprecedented levels of statistical association with many developmental neuropsychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability and attention deficit hyperactivity disorder. However, as CNVs often include multiple genes, causal genes responsible for CNV-associated diagnoses and traits are still poorly understood. Mouse models of CNVs are in use to delve into the precise mechanisms through which CNVs contribute to disorders and associated traits. Based on human and mouse model studies on rare CNVs within human chromosome 22q11.2, we propose that alterations of a distinct set of multiple, noncontiguous genes encoded in this chromosomal region, in concert with modulatory impacts of genetic background and environmental factors, variably shift the probabilities of phenotypes along a predetermined developmental trajectory. This model can be further extended to the study of other CNVs and may serve as a guide to help characterize the impact of genes in developmental neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jacobsen LK, Rapoport JL . Research update: childhood-onset schizophrenia: implications of clinical and neurobiological research. J Child Psychol Psychiatry 1998; 39: 101–113.

    CAS  PubMed  Google Scholar 

  2. McKenna K, Gordon CT, Lenane M, Kaysen D, Fahey K, Rapoport JL . Looking for childhood-onset schizophrenia: the first 71 cases screened. J Am Acad Child Adolesc Psychiatry 1994; 33: 636–644.

    Article  CAS  PubMed  Google Scholar 

  3. Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, Baird G et al. Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Genet 2012; 21: 4781–4792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Stergiakouli E, Hamshere M, Holmans P, Langley K, Zaharieva I, Hawi Z et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. Am J Psychiatry 2012; 169: 186–194.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007; 39: 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  8. Shprintzen RJ, Goldberg R, Golding-Kushner KJ, Marion RW . Late-onset psychosis in the velo-cardio-facial syndrome. Am J Med Genet 1992; 42: 141–142.

    Article  CAS  PubMed  Google Scholar 

  9. Driscoll DA, Spinner NB, Budarf ML, Donald-McGinn DM, Zackai EH, Goldberg RB et al. Deletions and microdeletions of 22q11.2 in velo-cardio-facial syndrome. Am J Med Genet 1992; 44: 261–268.

    Article  CAS  PubMed  Google Scholar 

  10. Driscoll DA, Budarf ML, Emanuel BS . A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet 1992; 50: 924–933.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Scambler PJ, Kelly D, Lindsay E, Williamson R, Goldberg R, Shprintzen R et al. Velo-cardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus. Lancet 1992; 339: 1138–1139.

    Article  CAS  PubMed  Google Scholar 

  12. Malhotra D, Sebat J . CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148: 1223–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sullivan PF, Daly MJ, O’Donovan M . Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Debbane M, Glaser B, David MK, Feinstein C, Eliez S . Psychotic symptoms in children and adolescents with 22q11.2 deletion syndrome: neuropsychological and behavioral implications. Schizophr Res 2006; 84: 187–193.

    Article  PubMed  Google Scholar 

  15. Gothelf D, Presburger G, Zohar AH, Burg M, Nahmani A, Frydman M et al. Obsessive–compulsive disorder in patients with velocardiofacial (22q11 deletion) syndrome. Am J Med Genet B Neuropsychiatr Genet 2004; 126: 99–105.

    Article  Google Scholar 

  16. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  17. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 1994; 182: 476–478.

    Article  CAS  PubMed  Google Scholar 

  18. Fung WL, McEvilly R, Fong J, Silversides C, Chow E, Bassett A . Elevated prevalence of generalized anxiety disorder in adults with 22q11.2 deletion syndrome. Am J Psychiatry 2010; 167: 998.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Green T, Gothelf D, Glaser B, Debbane M, Frisch A, Kotler M et al. Psychiatric disorders and intellectual functioning throughout development in velocardiofacial (22q11.2 deletion) syndrome. J Am Acad Child Adolesc Psychiatry 2009; 48: 1060–1068.

    Article  PubMed  Google Scholar 

  20. Bassett AS, Chow EW . Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep 2008; 10: 148–157.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168: 302–316.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan W, Jacobsen LK, Krasnewich DM, Guan XY, Lenane MC, Paul SP et al. Chromosome 22q11.2 interstitial deletions among childhood-onset schizophrenics and ‘multidimensionally impaired’. Am J Med Genet 1998; 81: 41–43.

    Article  CAS  PubMed  Google Scholar 

  24. Usiskin SI, Nicolson R, Krasnewich DM, Yan W, Lenane M, Wudarsky M et al. Velocardiofacial syndrome in childhood-onset schizophrenia. J Am Acad Child Adolesc Psychiatry 1999; 38: 1536–1543.

    Article  CAS  PubMed  Google Scholar 

  25. Ivanov D, Kirov G, Norton N, Williams HJ, Williams NM, Nikolov I et al. Chromosome 22q11 deletions, velo-cardio-facial syndrome and early-onset psychosis. Molecular genetic study. Br J Psychiatry 2003; 183: 409–413.

    Article  CAS  PubMed  Google Scholar 

  26. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 2009; 66: 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arinami T, Ohtsuki T, Takase K, Shimizu H, Yoshikawa T, Horigome H et al. Screening for 22q11 deletions in a schizophrenia population. Schizophr Res 2001; 52: 167–170.

    Article  CAS  PubMed  Google Scholar 

  29. Baker KD, Skuse DH . Adolescents and young adults with 22q11 deletion syndrome: psychopathology in an at-risk group. Br J Psychiatry 2005; 186: 115–120.

    Article  PubMed  Google Scholar 

  30. Golding-Kushner KJ, Weller G, Shprintzen RJ . Velo-cardio-facial syndrome: language and psychological profiles. J Craniofac Genet Dev Biol 1985; 5: 259–266.

    CAS  PubMed  Google Scholar 

  31. Heineman-de Boer JA, Van Haelst MJ, Cordia-de HM, Beemer FA . Behavior problems and personality aspects of 40 children with velo-cardio-facial syndrome. Genet Couns 1999; 10: 89–93.

    CAS  PubMed  Google Scholar 

  32. Kiley-Brabeck K, Sobin C . Social skills and executive function deficits in children with the 22q11 deletion syndrome. Appl Neuropsychol 2006; 13: 258–268.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Niklasson L, Rasmussen P, Oskarsdottir S, Gillberg C . Chromosome 22q11 deletion syndrome (CATCH 22): neuropsychiatric and neuropsychological aspects. Dev Med Child Neurol 2002; 44: 44–50.

    Article  PubMed  Google Scholar 

  34. Shashi V, Veerapandiyan A, Schoch K, Kwapil T, Keshavan M, Ip E et al. Social skills and associated psychopathology in children with chromosome 22q11.2 deletion syndrome: implications for interventions. J Intellect Disabil Res 2012; 56: 865–878.

    Article  CAS  PubMed  Google Scholar 

  35. Swillen A, Devriendt K, Legius E, Eyskens B, Dumoulin M, Gewillig M et al. Intelligence and psychosocial adjustment in velocardiofacial syndrome: a study of 37 children and adolescents with VCFS. J Med Genet 1997; 34: 453–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woodin M, Wang PP, Aleman D, Donald-McGinn D, Zackai E, Moss E . Neuropsychological profile of children and adolescents with the 22q11.2 microdeletion. Genet Med 2001; 3: 34–39.

    Article  CAS  PubMed  Google Scholar 

  37. Antshel KM, Aneja A, Strunge L, Peebles J, Fremont WP, Stallone K et al. Autistic spectrum disorders in velo-cardio facial syndrome (22q11.2 deletion). J Autism Dev Disord 2007; 37: 1776–1786.

    Article  PubMed  Google Scholar 

  38. Esterberg ML, Ousley OY, Cubells JF, Walker EF . Prodromal and autistic symptoms in schizotypal personality disorder and 22q11.2 deletion syndrome. J Abnorm Psychol 2013; 122: 238–249.

    Article  PubMed  Google Scholar 

  39. Fine SE, Weissman A, Gerdes M, Pinto-Martin J, Zackai EH, Donald-McGinn DM et al. Autism spectrum disorders and symptoms in children with molecularly confirmed 22q11.2 deletion syndrome. J Autism Dev Disord 2005; 35: 461–473.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kates WR, Antshel KM, Fremont WP, Shprintzen RJ, Strunge LA, Burnette CP et al. Comparing phenotypes in patients with idiopathic autism to patients with velocardiofacial syndrome (22q11 DS) with and without autism. Am J Med Genet A 2007; 143A: 2642–2650.

    Article  PubMed  Google Scholar 

  41. Niklasson L, Rasmussen P, Oskarsdottir S, Gillberg C . Autism, ADHD, mental retardation and behavior problems in 100 individuals with 22q11 deletion syndrome. Res Dev Disabil 2009; 30: 763–773.

    Article  PubMed  Google Scholar 

  42. Vorstman JA, Morcus ME, Duijff SN, Klaassen PW, Heineman-de Boer JA, Beemer FA et al. The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry 2006; 45: 1104–1113.

    Article  PubMed  Google Scholar 

  43. Mukaddes NM, Herguner S . Autistic disorder and 22q11.2 duplication. World J Biol Psychiatry 2007; 8: 127–130.

    Article  PubMed  Google Scholar 

  44. Ramelli GP, Silacci C, Ferrarini A, Cattaneo C, Visconti P, Pescia G . Microduplication 22q11.2 in a child with autism spectrum disorder: clinical and genetic study. Dev Med Child Neurol 2008; 50: 953–955.

    Article  PubMed  Google Scholar 

  45. Bucan M, Abrahams BS, Wang K, Glessner JT, Herman EI, Sonnenblick LI et al. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet 2009; 5: e1000536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai G, Edelmann L, Goldsmith JE, Cohen N, Nakamine A, Reichert JG et al. Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Med Genomics 2008; 1: 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Christian SL, Brune CW, Sudi J, Kumar RA, Liu S, Karamohamed S et al. Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol Psychiatry 2008; 63: 1111–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, Geschwind DH et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry, advance online publication, 9 October 2012; doi:10.1038/mp.2012.138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 2011; 70: 863–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karayiorgou M, Simon TJ, Gogos JA . 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 2010; 11: 402–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med 2012; 367: 1321–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vorstman JA, Breetvelt EJ, Thode KI, Chow EW, Bassett AS . Expression of autism spectrum and schizophrenia in patients with a 22q11.2 deletion. Schizophr Res 2013; 143: 55–59.

    Article  PubMed  Google Scholar 

  55. Bassett AS, Hodgkinson K, Chow EW, Correia S, Scutt LE, Weksberg R . 22q11 deletion syndrome in adults with schizophrenia. Am J Med Genet 1998; 81: 328–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gothelf D, Frisch A, Munitz H, Rockah R, Laufer N, Mozes T et al. Clinical characteristics of schizophrenia associated with velo-cardio-facial syndrome. Schizophr Res 1999; 35: 105–112.

    Article  CAS  PubMed  Google Scholar 

  57. Moss EM, Batshaw ML, Solot CB, Gerdes M, Donald-McGinn DM, Driscoll DA et al. Psychoeducational profile of the 22q11.2 microdeletion: a complex pattern. J Pediatr 1999; 134: 193–198.

    Article  CAS  PubMed  Google Scholar 

  58. Niklasson L, Rasmussen P, Oskarsdottir S, Gillberg C . Neuropsychiatric disorders in the 22q11 deletion syndrome. Genet Med 2001; 3: 79–84.

    Article  CAS  PubMed  Google Scholar 

  59. De Smedt B, Devriendt K, Fryns JP, Vogels A, Gewillig M, Swillen A . Intellectual abilities in a large sample of children with velo-cardio-facial syndrome: an update. J Intellect Disabil Res 2007; 51: 666–670.

    Article  CAS  PubMed  Google Scholar 

  60. Butcher NJ, Chow EW, Costain G, Karas D, Ho A, Bassett AS . Functional outcomes of adults with 22q11.2 deletion syndrome. Genet Med 2012; 14: 836–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duijff SN, Klaassen PW, de Veye HF, Beemer FA, Sinnema G, Vorstman JA . Cognitive development in children with 22q11.2 deletion syndrome. Br J Psychiatry 2012; 200: 462–468.

    Article  PubMed  Google Scholar 

  62. Alberti A, Romano C, Falco M, Cali F, Schinocca P, Galesi O et al. 1.5 Mb de novo 22q11.21 microduplication in a patient with cognitive deficits and dysmorphic facial features. Clin Genet 2007; 71: 177–182.

    Article  CAS  PubMed  Google Scholar 

  63. Brunet A, Gabau E, Perich RM, Valdesoiro L, Brun C, Caballin MR et al. Microdeletion and microduplication 22q11.2 screening in 295 patients with clinical features of DiGeorge/velocardiofacial syndrome. Am J Med Genet A 2006; 140: 2426–2432.

    Article  PubMed  Google Scholar 

  64. Courtens W, Schramme I, Laridon A . Microduplication 22q11.2: a benign polymorphism or a syndrome with a very large clinical variability and reduced penetrance? — Report of two families. Am J Med Genet A 2008; 146A: 758–763.

    Article  PubMed  Google Scholar 

  65. Descartes M, Franklin J, De Stahl TD, Piotrowski A, Bruder CE, Dumanski JP et al. Distal 22q11.2 microduplication encompassing the BCR gene. Am J Med Genet A 2008; 146A: 3075–3081.

    Article  CAS  PubMed  Google Scholar 

  66. Edelmann L, Pandita RK, Spiteri E, Funke B, Goldberg R, Palanisamy N et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 1999; 8: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  67. Ensenauer RE, Adeyinka A, Flynn HC, Michels VV, Lindor NM, Dawson DB et al. Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J Hum Genet 2003; 73: 1027–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hassed SJ, Hopcus-Niccum D, Zhang L, Li S, Mulvihill JJ . A new genomic duplication syndrome complementary to the velocardiofacial (22q11 deletion) syndrome. Clin Genet 2004; 65: 400–404.

    Article  CAS  PubMed  Google Scholar 

  69. Lo-Castro A, Galasso C, Cerminara C, El-Malhany N, Benedetti S, Nardone AM et al. Association of syndromic mental retardation and autism with 22q11.2 duplication. Neuropediatrics 2009; 40: 137–140.

    Article  CAS  PubMed  Google Scholar 

  70. Ou Z, Berg JS, Yonath H, Enciso VB, Miller DT, Picker J et al. Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet Med 2008; 10: 267–277.

    Article  PubMed  Google Scholar 

  71. Portnoi MF, Lebas F, Gruchy N, Ardalan A, Biran-Mucignat V, Malan V et al. 22q11.2 duplication syndrome: two new familial cases with some overlapping features with DiGeorge/velocardiofacial syndromes. Am J Med Genet A 2005; 137: 47–51.

    Article  PubMed  Google Scholar 

  72. van Campenhout S, Devriendt K, Breckpot J, Frijns J-P, Peters H, van Buggenhout G et al. Microduplication 22q11.2: a description of the clinical, developmental and behavioral characteristics during childhood. Genet Couns 2012; 23: 135–147.

    CAS  PubMed  Google Scholar 

  73. Wentzel C, Fernstrom M, Ohrner Y, Anneren G, Thuresson AC . Clinical variability of the 22q11.2 duplication syndrome. Eur J Med Genet 2008; 51: 501–510.

    Article  PubMed  Google Scholar 

  74. Yobb TM, Somerville MJ, Willatt L, Firth HV, Harrison K, MacKenzie J et al. Microduplication and triplication of 22q11.2: a highly variable syndrome. Am J Hum Genet 2005; 76: 865–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu S, Cox K, Friend K, Smith S, Buchheim R, Bain S et al. Familial 22q11.2 duplication: a three-generation family with a 3-Mb duplication and a familial 1.5-Mb duplication. Clin Genet 2008; 73: 160–164.

    Article  CAS  PubMed  Google Scholar 

  76. Arnold PD, Siegel-Bartelt J, Cytrynbaum C, Teshima I, Schachar R . Velo-cardio-facial syndrome: implications of microdeletion 22q11 for schizophrenia and mood disorders. Am J Med Genet 2001; 105: 354–362.

    Article  CAS  PubMed  Google Scholar 

  77. Carlson C, Papolos D, Pandita RK, Faedda GL, Veit S, Goldberg R et al. Molecular analysis of velo-cardio-facial syndrome patients with psychiatric disorders. Am J Hum Genet 1997; 60: 851–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Feinstein C, Eliez S, Blasey C, Reiss AL . Psychiatric disorders and behavioral problems in children with velocardiofacial syndrome: usefulness as phenotypic indicators of schizophrenia risk. Biol Psychiatry 2002; 51: 312–318.

    Article  PubMed  Google Scholar 

  79. Gothelf D, Presburger G, Levy D, Nahmani A, Burg M, Berant M et al. Genetic, developmental, and physical factors associated with attention deficit hyperactivity disorder in patients with velocardiofacial syndrome. Am J Med Genet B Neuropsychiatr Genet 2004; 126: 116–121.

    Article  Google Scholar 

  80. Papolos DF, Faedda GL, Veit S, Goldberg R, Morrow B, Kucherlapati R et al. Bipolar spectrum disorders in patients diagnosed with velo-cardio-facial syndrome: does a hemizygous deletion of chromosome 22q11 result in bipolar affective disorder? Am J Psychiatry 1996; 153: 1541–1547.

    Article  CAS  PubMed  Google Scholar 

  81. Antshel KM, Shprintzen R, Fremont W, Higgins AM, Faraone SV, Kates WR . Cognitive and psychiatric predictors to psychosis in velocardiofacial syndrome: a 3-year follow-up study. J Am Acad Child Adolesc Psychiatry 2010; 49: 333–344.

    PubMed  PubMed Central  Google Scholar 

  82. Jolin EM, Weller RA, Jessani NR, Zackai EH, Donald-McGinn DM, Weller EB . Affective disorders and other psychiatric diagnoses in children and adolescents with 22q11.2 deletion syndrome. J Affect Disord 2009; 119: 177–180.

    Article  CAS  PubMed  Google Scholar 

  83. Young AS, Shashi V, Schoch K, Kwapil T, Hooper SR . Discordance in diagnoses and treatment of psychiatric disorders in children and adolescents with 22q11.2 deletion syndrome. Asian J Psychiatr 2011; 4: 119–124.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet 2012; 44: 78–84.

    Article  CAS  Google Scholar 

  85. Williams NM, Franke B, Mick E, Anney RJ, Freitag CM, Gill M et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3. Am J Psychiatry 2012; 169: 195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kroenke K, Rosmalen JG . Symptoms, syndromes, and the value of psychiatric diagnostics in patients who have functional somatic disorders. Med Clin North Am 2006; 90: 603–626.

    Article  PubMed  Google Scholar 

  87. Michaelovsky E, Frisch A, Carmel M, Patya M, Zarchi O, Green T et al. Genotype–phenotype correlation in 22q11.2 deletion syndrome. BMC Med Genet 2012; 13: 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Niklasson L, Gillberg C . The neuropsychology of 22q11 deletion syndrome. A neuropsychiatric study of 100 individuals. Res Dev Disabil 2010; 31: 185–194.

    Article  PubMed  Google Scholar 

  89. Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet 2010; 42: 203–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bassett AS, Marshall CR, Lionel AC, Chow EW, Scherer SW . Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet 2008; 17: 4045–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey AJ et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 2012; 3: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Done DJ, Crow TJ, Johnstone EC, Sacker A . Childhood antecedents of schizophrenia and affective illness: social adjustment at ages 7 and 11. BMJ 1994; 309: 699–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Neumann CS, Grimes K, Walker EF, Baum K . Developmental pathways to schizophrenia: behavioral subtypes. J Abnorm Psychol 1995; 104: 558–566.

    Article  CAS  PubMed  Google Scholar 

  94. Jones P, Rodgers B, Murray R, Marmot M . Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 1994; 344: 1398–1402.

    Article  CAS  PubMed  Google Scholar 

  95. Malmberg A, Lewis G, David A, Allebeck P . Premorbid adjustment and personality in people with schizophrenia. Br J Psychiatry 1998; 172: 308–313.

    Article  CAS  PubMed  Google Scholar 

  96. Hollis C . Child and adolescent (juvenile onset) schizophrenia. A case control study of premorbid developmental impairments. Br J Psychiatry 1995; 166: 489–495.

    Article  CAS  PubMed  Google Scholar 

  97. Cannon TD, Rosso IM, Bearden CE, Sanchez LE, Hadley T . A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Dev Psychopathol 1999; 11: 467–485.

    Article  CAS  PubMed  Google Scholar 

  98. Gothelf D, Eliez S, Thompson T, Hinard C, Penniman L, Feinstein C et al. COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nat Neurosci 2005; 8: 1500–1502.

    Article  CAS  PubMed  Google Scholar 

  99. Gothelf D, Feinstein C, Thompson T, Gu E, Penniman L, Van SE et al. Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am J Psychiatry 2007; 164: 663–669.

    Article  PubMed  Google Scholar 

  100. Chow EW, Watson M, Young DA, Bassett AS . Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr Res 2006; 87: 270–278.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Brocki KC, Bohlin G . Executive functions in children aged 6 to 13: a dimensional and developmental study. Dev Neuropsychol 2004; 26: 571–593.

    Article  PubMed  Google Scholar 

  102. De Luca CR, Wood SJ, Anderson V, Buchanan JA, Proffitt TM, Mahony K et al. Normative data from the CANTAB. I: development of executive function over the lifespan. J Clin Exp Neuropsychol 2003; 25: 242–254.

    Article  PubMed  Google Scholar 

  103. Demetriou A, Christou C, Spanoudis G, Platsidou M . The development of mental processing: efficiency, working memory, and thinking. Monogr Soc Res Child Dev 2002; 67: 1–155.

    Article  Google Scholar 

  104. Dumontheil I, Roggeman C, Ziermans T, Peyrard-Janvid M, Matsson H, Kere J et al. Influence of the COMT genotype on working memory and brain activity changes during development. Biol Psychiatry 2011; 70: 222–229.

    Article  CAS  PubMed  Google Scholar 

  105. Gathercole SE, Pickering SJ, Ambridge B, Wearing H . The structure of working memory from 4 to 15 years of age. Dev Psychol 2004; 40: 177–190.

    Article  PubMed  Google Scholar 

  106. Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA . Maturation of cognitive processes from late childhood to adulthood. Child Dev 2004; 75: 1357–1372.

    Article  PubMed  Google Scholar 

  107. Luna B . Developmental changes in cognitive control through adolescence. Adv Child Dev Behav 2009; 37: 233–278.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Swanson HL . What develops in working memory? A life span perspective. Dev Psychol 1999; 35: 986–1000.

    Article  CAS  PubMed  Google Scholar 

  109. O’Hearn K, Schroer E, Minshew N, Luna B . Lack of developmental improvement on a face memory task during adolescence in autism. Neuropsychologia 2010; 48: 3955–3960.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cannon M, Caspi A, Moffitt TE, Harrington H, Taylor A, Murray RM et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry 2002; 59: 449–456.

    Article  PubMed  Google Scholar 

  111. Erlenmeyer-Kimling L, Rock D, Roberts SA, Janal M, Kestenbaum C, Cornblatt B et al. Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: the New York High-Risk Project. Am J Psychiatry 2000; 157: 1416–1422.

    Article  CAS  PubMed  Google Scholar 

  112. Niendam TA, Bearden CE, Rosso IM, Sanchez LE, Hadley T, Nuechterlein KH et al. A prospective study of childhood neurocognitive functioning in schizophrenic patients and their siblings. Am J Psychiatry 2003; 160: 2060–2062.

    Article  PubMed  Google Scholar 

  113. Martinussen R, Tannock R . Working memory impairments in children with attention-deficit hyperactivity disorder with and without comorbid language learning disorders. J Clin Exp Neuropsychol 2006; 28: 1073–1094.

    Article  PubMed  Google Scholar 

  114. Schuchardt K, Gebhardt M, Maehler C . Working memory functions in children with different degrees of intellectual disability. J Intellect Disabil Res 2010; 54: 346–353.

    Article  CAS  PubMed  Google Scholar 

  115. Baker K, Baldeweg T, Sivagnanasundaram S, Scambler P, Skuse D . COMT Val108/158 Met modifies mismatch negativity and cognitive function in 22q11 deletion syndrome. Biol Psychiatry 2005; 58: 23–31.

    Article  CAS  PubMed  Google Scholar 

  116. Campbell LE, Azuma R, Ambery F, Stevens A, Smith A, Morris RG et al. Executive functions and memory abilities in children with 22q11.2 deletion syndrome. Aust N Z J Psychiatry 2010; 44: 364–371.

    Article  PubMed  Google Scholar 

  117. Goldenberg PC, Calkins ME, Richard J, Donald-McGinn D, Zackai E, Mitra N et al. Computerized neurocognitive profile in young people with 22q11.2 deletion syndrome compared to youths with schizophrenia and at-risk for psychosis. Am J Med Genet B Neuropsychiatr Genet 2012; 159B: 87–93.

    Article  CAS  PubMed  Google Scholar 

  118. Lajiness-O’Neill RR, Beaulieu I, Titus JB, Asamoah A, Bigler ED, Bawle EV et al. Memory and learning in children with 22q11.2 deletion syndrome: evidence for ventral and dorsal stream disruption? Child Neuropsychol 2005; 11: 55–71.

    Article  PubMed  Google Scholar 

  119. Lewandowski KE, Shashi V, Berry PM, Kwapil TR . Schizophrenic-like neurocognitive deficits in children and adolescents with 22q11 deletion syndrome. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 27–36.

    Article  PubMed  Google Scholar 

  120. Sobin C, Kiley-Brabeck K, Daniels S, Khuri J, Taylor L, Blundell M et al. Neuropsychological characteristics of children with the 22q11 deletion syndrome: a descriptive analysis. Child Neuropsychol 2005; 11: 39–53.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mirsky AF, Duncan CC . A nosology of disorders of attention. Ann N Y Acad Sci 2001; 931: 17–32.

    Article  CAS  PubMed  Google Scholar 

  122. Pascualvaca DM, Fantie BD, Papageorgiou M, Mirsky AF . Attentional capacities in children with autism: is there a general deficit in shifting focus? J Autism Dev Disord 1998; 28: 467–478.

    Article  CAS  PubMed  Google Scholar 

  123. Goldstein G, Johnson CR, Minshew NJ . Attentional processes in autism. J Autism Dev Disord 2001; 31: 433–440.

    Article  CAS  PubMed  Google Scholar 

  124. Palmer BW, Heaton RK, Paulsen JS, Kuck J, Braff D, Harris MJ et al. Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology 1997; 11: 437–446.

    Article  CAS  PubMed  Google Scholar 

  125. Bish JP, Ferrante SM, Donald-McGinn D, Zackai E, Simon TJ . Maladaptive conflict monitoring as evidence for executive dysfunction in children with chromosome 22q11.2 deletion syndrome. Dev Sci 2005; 8: 36–43.

    Article  PubMed  Google Scholar 

  126. Sobin C, Kiley-Brabeck K, Daniels S, Blundell M, Anyane-Yeboa K, Karayiorgou M . Networks of attention in children with the 22q11 deletion syndrome. Dev Neuropsychol 2004; 26: 611–626.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Stoddard J, Beckett L, Simon TJ . Atypical development of the executive attention network in children with chromosome 22q11.2 deletion syndrome. J Neurodev Disord 2011; 3: 76–85.

    Article  PubMed  Google Scholar 

  128. Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT . The social motivation theory of autism. Trends Cogn Sci 2012; 16: 231–239.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Baron-Cohen S, Jolliffe T, Mortimore C, Robertson M . Another advanced test of theory of mind: evidence from very high functioning adults with autism or Asperger syndrome. J Child Psychol Psychiatry 1997; 38: 813–822.

    Article  CAS  PubMed  Google Scholar 

  130. Pellicano E . Individual differences in executive function and central coherence predict developmental changes in theory of mind in autism. Dev Psychol 2010; 46: 530–544.

    Article  PubMed  Google Scholar 

  131. Sasson NJ, Pinkham AE, Carpenter KL, Belger A . The benefit of directly comparing autism and schizophrenia for revealing mechanisms of social cognitive impairment. J Neurodev Disord 2011; 3: 87–100.

    Article  PubMed  Google Scholar 

  132. Pinkham AE, Penn DL, Perkins DO, Lieberman J . Implications for the neural basis of social cognition for the study of schizophrenia. Am J Psychiatry 2003; 160: 815–824.

    Article  PubMed  Google Scholar 

  133. Penn DL, Corrigan PW, Bentall RP, Racenstein JM, Newman L . Social cognition in schizophrenia. Psychol Bull 1997; 121: 114–132.

    Article  CAS  PubMed  Google Scholar 

  134. Frith CD . Schizophrenia and theory of mind. Psychol Med 2004; 34: 385–389.

    Article  CAS  PubMed  Google Scholar 

  135. Craig JS, Hatton C, Craig FB, Bentall RP . Persecutory beliefs, attributions and theory of mind: comparison of patients with paranoid delusions, Asperger’s syndrome and healthy controls. Schizophr Res 2004; 69: 29–33.

    Article  PubMed  Google Scholar 

  136. Campbell LE, Stevens AF, McCabe K, Cruickshank L, Morris RG, Murphy DG et al. Is theory of mind related to social dysfunction and emotional problems in 22q11.2 deletion syndrome (velo-cardio-facial syndrome)? J Neurodev Disord 2011; 3: 152–161.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Schneider M, Van der LM, Glaser B, Rizzi E, Dahoun SP, Hinard C et al. Preliminary structure and predictive value of attenuated negative symptoms in 22q11.2 deletion syndrome. Psychiatry Res 2012; 196: 277–284.

    Article  CAS  PubMed  Google Scholar 

  138. Geyer MA . The family of sensorimotor gating disorders: comorbidities or diagnostic overlaps? Neurotox Res 2006; 10: 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. McAlonan GM, Daly E, Kumari V, Critchley HD, van AT, Suckling J et al. Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain 2002; 125: 1594–1606.

    Article  PubMed  Google Scholar 

  140. Perry W, Minassian A, Lopez B, Maron L, Lincoln A . Sensorimotor gating deficits in adults with autism. Biol Psychiatry 2007; 61: 482–486.

    Article  PubMed  Google Scholar 

  141. Yuhas J, Cordeiro L, Tassone F, Ballinger E, Schneider A, Long JM et al. Brief report: sensorimotor gating in idiopathic autism and autism associated with fragile X syndrome. J Autism Dev Disord 2010; 41: 248–253.

    Article  PubMed Central  Google Scholar 

  142. Sobin C, Kiley-Brabeck K, Karayiorgou M . Lower prepulse inhibition in children with the 22q11 deletion syndrome. Am J Psychiatry 2005; 162: 1090–1099.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Weksberg R, Stachon AC, Squire JA, Moldovan L, Bayani J, Meyn S et al. Molecular characterization of deletion breakpoints in adults with 22q11 deletion syndrome. Hum Genet 2007; 120: 837–845.

    Article  CAS  PubMed  Google Scholar 

  144. Ye T, Lipska BK, Tao R, Hyde TM, Wang L, Li C et al. Analysis of copy number variations in brain DNA from patients with schizophrenia and other psychiatric disorders. Biol Psychiatry 2012; 72: 651–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA 2006; 103: 7729–7734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bartsch I, Sandrock K, Lanza F, Nurden P, Hainmann I, Pavlova A et al. Deletion of human GP1BB and SEPT5 is associated with Bernard–Soulier syndrome, platelet secretion defect, polymicrogyria, and developmental delay. Thromb Haemost 2011; 106: 475–483.

    Article  CAS  PubMed  Google Scholar 

  147. Kempf L, Nicodemus KK, Kolachana B, Vakkalanka R, Verchinski BA, Egan MF et al. Functional polymorphisms in PRODH are associated with risk and protection for schizophrenia and fronto-striatal structure and function. PLoS Genet 2008; 4: e1000252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li D, He L . Association study of the G-protein signaling 4 (RGS4) and proline dehydrogenase (PRODH) genes with schizophrenia: a meta-analysis. Eur J Hum Genet 2006; 14: 1130–1135.

    Article  CAS  PubMed  Google Scholar 

  149. Funke BH, Lencz T, Finn CT, DeRosse P, Poznik GD, Plocik AM et al. Analysis of TBX1 variation in patients with psychotic and affective disorders. Mol Med 2007; 13: 407–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17: 887–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Okochi T, Ikeda M, Kishi T, Kawashima K, Kinoshita Y, Kitajima T et al. Meta-analysis of association between genetic variants in COMT and schizophrenia: an update. Schizophr Res 2009; 110: 140–148.

    Article  PubMed  Google Scholar 

  152. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827–834.

    Article  CAS  PubMed  Google Scholar 

  153. Xu M, St Clair D, He L . Testing for genetic association between the ZDHHC8 gene locus and susceptibility to schizophrenia: an integrated analysis of multiple datasets. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1266–1275.

    Article  PubMed  Google Scholar 

  154. Zhou Y, Wang J, Lu X, Song X, Ye Y, Zhou J et al. Evaluation of six SNPs of microRNA machinery genes and risk of schizophrenia. J Mol Neurosci 2013; 49: 594–599.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang F, Chen Y, Liu C, Lu T, Yan H, Ruan Y et al. Systematic association analysis of microRNA machinery genes with schizophrenia informs further study. Neurosci Lett 2012; 520: 47–50.

    Article  CAS  PubMed  Google Scholar 

  156. Jitoku D, Hattori E, Iwayama Y, Yamada K, Toyota T, Kikuchi M et al. Association study of Nogo-related genes with schizophrenia in a Japanese case–control sample. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 581–592.

    Article  CAS  PubMed  Google Scholar 

  157. Pasaje CF, Bae JS, Park BL, Park CS, Kim BJ, Lee CS et al. Lack of association of the RTN4R genetic variations with risk of schizophrenia and SPEM abnormality in a Korean population. Psychiatry Res 2011; 189: 312–314.

    Article  CAS  PubMed  Google Scholar 

  158. Meng J, Shi Y, Zhao X, Guo S, Wang H, Zheng Y et al. No association between the genetic polymorphisms in the RTN4R gene and schizophrenia in the Chinese population. J Neural Transm 2007; 114: 249–254.

    Article  CAS  PubMed  Google Scholar 

  159. Sinibaldi L, De LA, Bellacchio E, Conti E, Pasini A, Paloscia C et al. Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum Mutat 2004; 24: 534–535.

    Article  CAS  PubMed  Google Scholar 

  160. Budel S, Padukkavidana T, Liu BP, Feng Z, Hu F, Johnson S et al. Genetic variants of Nogo-66 receptor with possible association to schizophrenia block myelin inhibition of axon growth. J Neurosci 2008; 28: 13161–13172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hsu R, Woodroffe A, Lai WS, Cook MN, Mukai J, Dunning JP et al. Nogo receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches. PLoS One 2007; 2: e1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 16859–16864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ishiguro H, Koga M, Horiuchi Y, Noguchi E, Morikawa M, Suzuki Y et al. Supportive evidence for reduced expression of GNB1L in schizophrenia. Schizophr Bull 2010; 36: 756–765.

    Article  PubMed  Google Scholar 

  164. Li Y, Zhao Q, Wang T, Liu J, Li J, Li T et al. Association study between GNB1L and three major mental disorders in Chinese Han populations. Psychiatry Res 2011; 187: 457–459.

    Article  CAS  PubMed  Google Scholar 

  165. Williams NM, Glaser B, Norton N, Williams H, Pierce T, Moskvina V et al. Strong evidence that GNB1L is associated with schizophrenia. Hum Mol Genet 2008; 17: 555–566.

    Article  CAS  PubMed  Google Scholar 

  166. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 2011; 43: 1224–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 2009; 459: 528–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Weiss LA, Arking DE, Daly MJ, Chakravarti A . A genome-wide linkage and association scan reveals novel loci for autism. Nature 2009; 461: 802–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bassett AS, Caluseriu O, Weksberg R, Young DA, Chow EW . Catechol-O-methyl transferase and expression of schizophrenia in 73 adults with 22q11 deletion syndrome. Biol Psychiatry 2007; 61: 1135–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. van Amelsvoort T, Zinkstok J, Figee M, Daly E, Morris R, Owen MJ et al. Effects of a functional COMT polymorphism on brain anatomy and cognitive function in adults with velo-cardio-facial syndrome. Psychol Med 2008; 38: 89–100.

    Article  CAS  PubMed  Google Scholar 

  172. de Koning MB, Boot E, Bloemen OJ, van Duin ED, Abel KM, de Haan L et al. Startle reactivity and prepulse inhibition of the acoustic startle response are modulated by catechol-O-methyl-transferase Val(158) Met polymorphism in adults with 22q11 deletion syndrome. J Psychopharmacol 2012; 26: 1548–1560.

    Article  CAS  PubMed  Google Scholar 

  173. Boot E, Booij J, Abeling N, Meijer J, da Silva AF, Zinkstok J et al. Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia — relationship with COMT Val108/158Met polymorphism, gender and symptomatology. J Psychopharmacol 2011; 25: 888–895.

    Article  CAS  PubMed  Google Scholar 

  174. Hyman SE . Can neuroscience be integrated into the DSM-V? Nat Rev Neurosci 2007; 8: 725–732.

    Article  CAS  PubMed  Google Scholar 

  175. Insel TR . From animal models to model animals. Biol Psychiatry 2007; 62: 1337–1339.

    Article  PubMed  Google Scholar 

  176. Tamada K, Tomonaga S, Hatanaka F, Nakai N, Takao K, Miyakawa T et al. Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling. PLoS One 2010; 5: e15126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009; 137: 1235–1246.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Horev G, Ellegood J, Lerch JP, Son YE, Muthuswamy L, Vogel H et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA 2011; 108: 17076–17081.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Walz K, Paylor R, Yan J, Bi W, Lupski JR . Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2). J Clin Invest 2006; 116: 3035–3041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bi W, Yan J, Shi X, Yuva-Paylor LA, Antalffy BA, Goldman A et al. Rai1 deficiency in mice causes learning impairment and motor dysfunction, whereas Rai1 heterozygous mice display minimal behavioral phenotypes. Hum Mol Genet 2007; 16: 1802–1813.

    Article  CAS  PubMed  Google Scholar 

  181. Long JM, Laporte P, Merscher S, Funke B, Saint-Jore B, Puech A et al. Behavior of mice with mutations in the conserved region deleted in velocardiofacial/DiGeorge syndrome. Neurogenetics 2006; 7: 247–257.

    Article  PubMed  Google Scholar 

  182. Paylor R, McIlwain KL, McAninch R, Nellis A, Yuva-Paylor LA, Baldini A et al. Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments. Hum Mol Genet 2001; 10: 2645–2650.

    Article  CAS  PubMed  Google Scholar 

  183. Hiroi N, Zhu H, Lee M, Funke B, Arai M, Itokawa M et al. A 200-kb region of human chromosome 22q11.2 confers antipsychotic-responsive behavioral abnormalities in mice. Proc Natl Acad Sci USA 2005; 102: 19132–19137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Suzuki G, Harper KM, Hiramoto T, Funke B, Lee M, Kang G et al. Over-expression of a human chromosome 22q11.2 segment including TXNRD2, COMT, and ARVCF developmentally affects incentive learning and working memory in mice. Hum Mol Genet 2009; 18: 3914–3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Stark KL, Burt RA, Gogos JA, Karayiorgou M . Analysis of prepulse inhibition in mouse lines overexpressing 22q11.2 orthologues. Int J Neuropsychopharmacol 2009; 12: 983–989.

    Article  CAS  PubMed  Google Scholar 

  186. Hiramoto T, Kang G, Suzuki G, Satoh Y, Kucherlapati R, Watanabe Y et al. Tbx1: identification of a 22q11.2 gene as a risk factor for autism spectrum disorder in a mouse model. Hum Mol Genet 2011; 20: 4775–4785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Harper KM, Hiramoto T, Tanigaki K, Kang G, Suzuki G, Trimble W et al. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain. Hum Mol Genet 2012; 21: 3489–3499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Suzuki G, Harper KM, Hiramoto T, Sawamura T, Lee M, Kang G et al. Sept5 deficiency exerts pleiotropic influence on affective behaviors and cognitive functions in mice. Hum Mol Genet 2009; 18: 1652–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hiroi N, Hiramoto T, Harper KM, Suzuki G, Boku S . Mouse models of 22q11.2-associated autism spectrum disorder. Autism 2012; S1: 1–9.

    Google Scholar 

  190. Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 2008; 28: 8709–8723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 1998; 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. O’Tuathaigh CM, Clarke G, Walsh J, Desbonnet L, Petit E, O’Leary C et al. Genetic vs. pharmacological inactivation of COMT influences cannabinoid-induced expression of schizophrenia-related phenotypes. Int J Neuropsychopharmacol 2012; 15: 1331–1342.

    Article  CAS  PubMed  Google Scholar 

  193. O’Tuathaigh CM, Hryniewiecka M, Behan A, Tighe O, Coughlan C, Desbonnet L et al. Chronic adolescent exposure to delta-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology 2010; 35: 2262–2273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Babovic D, O’Tuathaigh CM, O’Connor AM, O’Sullivan GJ, Tighe O, Croke DT et al. Phenotypic characterization of cognition and social behavior in mice with heterozygous versus homozygous deletion of catechol-O-methyltransferase. Neuroscience 2008; 155: 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  195. Kimber WL, Hsieh P, Hirotsune S, Yuva-Paylor L, Sutherland HF, Chen A et al. Deletion of 150 kb in the minimal DiGeorge/velocardiofacial syndrome critical region in mouse. Hum Mol Genet 1999; 8: 2229–2237.

    Article  CAS  PubMed  Google Scholar 

  196. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40: 751–760.

    Article  CAS  PubMed  Google Scholar 

  197. Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004; 36: 725–731.

    Article  CAS  PubMed  Google Scholar 

  198. Paylor R, Crawley JN . Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl) 1997; 132: 169–180.

    Article  CAS  Google Scholar 

  199. Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, Matsumata M et al. Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol 2007; 5: e297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Willott JF, Tanner L, O’Steen J, Johnson KR, Bogue MA, Gagnon L . Acoustic startle and prepulse inhibition in 40 inbred strains of mice. Behav Neurosci 2003; 117: 716–727.

    Article  PubMed  Google Scholar 

  201. Wolfer DP, Crusio WE, Lipp HP . Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 2002; 25: 336–340.

    Article  CAS  PubMed  Google Scholar 

  202. Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 1999; 21: 434–439.

    Article  CAS  PubMed  Google Scholar 

  203. Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J et al. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci 2005; 8: 1586–1594.

    Article  CAS  PubMed  Google Scholar 

  204. Keshavan MS, Clementz BA, Pearlson GD, Sweeney JA, Tamminga CA . Reimagining psychoses: an agnostic approach to diagnosis. Schizophr Res 2013; 146: 10–16.

    Article  PubMed  Google Scholar 

  205. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Herb Lachman, Santhosh Girirajan and Edward Brodkin for their invaluable comments on an early draft of this paper. This work was supported by the NIH (R21HD05311 and R01MH099660), NARSAD Independent Investigator Award and the Maltz Foundation to NH; funds from the Ministry of Defense, Japan, to TT; the Uehara fellowship and a Senshin Medical Research Foundation fellowship, Japan, to SB; funds from Kobe University Graduate School of Medicine to AH; and Grants-in-Aid for Scientific Research (24591674) from the Society for Promotion of Science, Japan, to TI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Hiroi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiroi, N., Takahashi, T., Hishimoto, A. et al. Copy number variation at 22q11.2: from rare variants to common mechanisms of developmental neuropsychiatric disorders. Mol Psychiatry 18, 1153–1165 (2013). https://doi.org/10.1038/mp.2013.92

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.92

Keywords

This article is cited by

Search

Quick links