Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Copy number variation in schizophrenia in Sweden

Subjects

Abstract

Schizophrenia (SCZ) is a highly heritable neuropsychiatric disorder of complex genetic etiology. Previous genome-wide surveys have revealed a greater burden of large, rare copy number variations (CNVs) in SCZ cases and identified multiple rare recurrent CNVs that increase risk of SCZ although with incomplete penetrance and pleiotropic effects. Identification of additional recurrent CNVs and biological pathways enriched for SCZ CNVs requires greater sample sizes. We conducted a genome-wide survey for CNVs associated with SCZ using a Swedish national sample (4719 cases and 5917 controls). High-confidence CNV calls were generated using genotyping array intensity data, and their effect on risk of SCZ was measured. Our data confirm increased burden of large, rare CNVs in SCZ cases as well as significant associations for recurrent 16p11.2 duplications, 22q11.2 deletions and 3q29 deletions. We report a novel association for 17q12 duplications (odds ratio=4.16, P=0.018), previously associated with autism and mental retardation but not SCZ. Intriguingly, gene set association analyses implicate biological pathways previously associated with SCZ through common variation and exome sequencing (calcium channel signaling and binding partners of the fragile X mental retardation protein). We found significantly increased burden of the largest CNVs (>500 kb) in genes present in the postsynaptic density, in genomic regions implicated via SCZ genome-wide association studies and in gene products localized to mitochondria and cytoplasm. Our findings suggest that multiple lines of genomic inquiry—genome-wide screens for CNVs, common variation and exonic variation—are converging on similar sets of pathways and/or genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Saha S, Chant D, McGrath J . A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch Gen Psychiatry 2007; 64: 1123–1131.

    Article  PubMed  Google Scholar 

  2. World Health Organization. The Global Burden of Disease: 2004 Update. WHO Press: Geneva, Switerland, 2008.

  3. Knapp M, Mangalore R, Simon J . The global costs of schizophrenia. Schizophr Bull 2004; 30: 279–293.

    Article  PubMed  Google Scholar 

  4. Lichtenstein P, Sullivan PF, Cnattingius S, Gatz M, Johansson S, Carlström E et al. The Swedish Twin Registry in the third millennium—an update. Twin Res Hum Genet 2006; 9: 875–882.

    Article  PubMed  Google Scholar 

  5. Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic influences for schizophrenia and bipolar disorder: a population-based study of 2 million nuclear families. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  6. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  7. Ripke S, Chambert K, Moran JL, Kähler AK, Akterin S, Bergen SE et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2012; 18: 708–712.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schizophrenia Psychiatric Genome-Wide Association Study Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  Google Scholar 

  10. Levinson D.F, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: Confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168: 302–316.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Malhotra D, Sebat J . CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148: 1223–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012; 17: 142–153.

    Article  CAS  PubMed  Google Scholar 

  13. Sullivan PF, Daly MJ, O'Donovan M . Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  16. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet. 2009; 18: 1497–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buizer-Voskamp JE, Strengman E, Sabatti C, Stefansson H, Vorstman JA, Ophoff RA et al. Genome-wide analysis shows increased frequency of copy number variation deletions in Dutch schizophrenia patients. Biol Psychiatry 2011; 70: 655–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 2011; 72: 951–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szatkiewicz JP, Neale BM, O'Dushlaine C, Fromer M, Goldstein JI, Moran JL et al. Detecting large copy number variants using exome genotyping arrays. Mol Psychiatry 2013; 18: 1178–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  Google Scholar 

  21. Bergen SE, O'Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared to bipolar disorder. Mol Psychiatry 2012; 17: 880–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kristjansson E, Allebeck P, Wistedt B . Validity of the diagnosis of schizophrenia in a psychiatric inpatient register. Nordisk Psykiatrik Tidsskrift 1987; 41: 229–234.

    Article  Google Scholar 

  23. Dalman C, Broms J, Cullberg J, Allebeck P . Young cases of schizophrenia identified in a national inpatient register—are the diagnoses valid? Soc Psychiatry Psychiatr Epidemiol 2002; 37: 527–531.

    Article  PubMed  Google Scholar 

  24. Hultman CM, Sparen P, Takei N, Murray RM, Cnattingius S . Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case-control study. BMJ 1999; 318: 421–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zammit S, Allebeck P, Dalman C, Lundberg I, Hemmingsson T, Lewis G . Investigating the association between cigarette smoking and schizophrenia in a cohort study. Am J Psychiatry 2003; 160: 2216–2221.

    Article  PubMed  Google Scholar 

  26. Andersson RE, Olaison G, Tysk C, Ekbom A . Appendectomy and protection against ulcerative colitis. N Engl J Med 2001; 344: 808–814.

    Article  CAS  PubMed  Google Scholar 

  27. Hansson LE, Nyrén O, Hsing AW, Bergström R, Josefsson S, Chow WH et al. The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N Engl J Med 1996; 335: 242–249.

    Article  CAS  PubMed  Google Scholar 

  28. Kendler KS . The super-normal control group in psychiatric genetics: possible artifactual evidence for coaggregation. Psychiatr Genet 1990; 1: 45–53.

    Google Scholar 

  29. Schwartz S, Susser E . The use of well controls: an unhealthy practice in psychiatric research. Psychol Med 2010; 41: 1–6.

    Google Scholar 

  30. Hartge P . Participation in population studies. Epidemiology 2006; 17: 252–254.

    Article  PubMed  Google Scholar 

  31. Morton LM, Cahill J, Hartge P . Reporting participation in epidemiologic studies: a survey of practice. Am J Epidemiol 2006; 163: 197–203.

    Article  PubMed  Google Scholar 

  32. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 2008; 40: 1253–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2011.

  35. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al. Multiple recurnrent de novo CNVs, including duplications of the 7q11.23 Williams Syndrome region, are strongly associated with autism. Neuron 2011; 70: 863–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43: 838–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cox D . The continuity correction. Biometrika 1970; 57: 217–219.

    Article  Google Scholar 

  38. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S et al. Ensembl 2013. Nucleic Acids Res 2013; 41: D48–D55.

    Article  CAS  PubMed  Google Scholar 

  39. Saha S, Chant D, Welham J, McGrath J . A systematic review of the prevalence of schizophrenia. PLoS Med 2005; 2: e141.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Raychaudhuri S, Altshuler D, Sklar P, Purcell S, Daly MJ, Korn JM et al. Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function. PLoS Genet 2010; 6: e1001097.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M . KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012; 40: D109–D114.

    Article  CAS  PubMed  Google Scholar 

  42. GO Project. The Gene Ontology: enhancements for 2011. Nucleic Acids Res 2012; 40: D559–D564.

    Article  Google Scholar 

  43. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD . PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic acids Res 2010; 38: D204–D210.

    Article  CAS  PubMed  Google Scholar 

  44. Jupe S, Akkerman JW, Soranzo N, Ouwehand WH . Reactome—a curated knowledgebase of biological pathways: megakaryocytes and platelets. J Thromb Haemost 2012; 10: 2399–2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McKusick VA . Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 2007; 80: 588–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  47. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011; 146: 247–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ruano D, Abecasis GR, Glaser B, Lips ES, Cornelisse LN, de Jong AP et al. Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. Am J Hum Genet 2010; 86: 113–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Croning MD, Marshall MC, McLaren P, Armstrong JD, Grant SG . G2Cdb: the Genes to Cognition database. Nucleic Acids Res 2009; 37: D846–D851.

    Article  CAS  PubMed  Google Scholar 

  50. Betancur C . Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 2011; 1380: 42–77.

    Article  CAS  PubMed  Google Scholar 

  51. Chiurazzi P, Schwartz CE, Gecz J, Neri G . XLMR genes: update 2007. Eur J Hum Genet 2008; 16: 422–434.

    Article  CAS  PubMed  Google Scholar 

  52. Inlow JK, Restifo LL . Molecular and comparative genetics of mental retardation. Genetics 2004; 166: 835–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011; 478: 57–63.

    Article  CAS  PubMed  Google Scholar 

  54. Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT . The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 2011; 39: D842–D848.

    Article  CAS  PubMed  Google Scholar 

  55. Maddatu TP, Grubb SC, Bult CJ, Bogue MA Mouse Phenome Database (MPD). Nucleic Acids Res 2011; 37: D720–D730.

    Google Scholar 

  56. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008; 134: 112–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Holm S . A simple sequentially rejective multiple test procedure. Scand J Stat 1979; 6: 65–70.

    Google Scholar 

  59. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    PubMed Central  Google Scholar 

  60. Ruderfer DM, Chambert K, Moran J, Talkowski M, Chen ES, Gigek C et al. Mosaic copy number variation in schizophrenia. Eur J Hum Genet 2013; 21: 1007–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rees E, Kirov G, Sanders A, Walters JT, Chambert KD, Shi J et al. Evidence that duplications of 22q11.2 protect against schizophrenia. Mol Psychiatry 2013; 19: 37–40.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 2012; 13: 293–307.

    Article  CAS  PubMed  Google Scholar 

  63. Robicsek O, Karry R, Petit I, Salman-Kesner N, Müller FJ, Klein E et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 2013; 18: 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  64. Ferreira M, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J et al. Collaborative genome-wide association analysis of 10 596 individuals supports a role for Ankyrin-G (ANK3) and the alpha-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Craddock N, Sklar P . Genetics of bipolar disorder. Lancet 2013; 381: 1654–1662.

    Article  CAS  PubMed  Google Scholar 

  66. Murray RM, Jones PB, Susser E, van Os J, Cannon M . The Epidemiology of Schizophrenia. Cambridge University Press: Cambridge, UK, 2003.

    Google Scholar 

  67. Handsaker RE, Korn JM, Nemesh J, McCarroll SA . Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat Genet 2011; 43: 269–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 2008; 40: 1166–1174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply grateful for the participation of all subjects contributing to this research and to the team that conducted the fieldwork (Emma Flordal-Thelander, Ann-Britt Holmgren, Marie Hallin, Marie Lundin, Ann-Kristin Sundberg, Christina Pettersson, Radja Satgunanthan-Dawoud, Sonja Hassellund, Malin Rådstrom, Birgitta Ohlander, Leila Nyrén and Isabelle Kizling). Funding support was provided by NIMH R01 MH077139 (Sullivan), NIMH R01 MH095034 (Sklar), NIMH K01 MH093517 (Szatklewicz), the Stanley Center for Psychiatric Research, the Stanley Medical Research Institute, the Sylvan Herman Foundation, the Karolinska Institutet, Karolinska University Hospital, the Swedish Research Council, the Swedish County Council, the Söderström Königska Foundation and the Netherlands Scientific Organization (NWO 645-000-003). The work at UK was funded by Medical Research Council (MRC) Centre (G0800509) and Program Grants (G0801418), the European Community’s Seventh Framework Programme (HEALTH-F2-2010-241909 (Project EU-GEI), an MRC PhD Studentship to ER, a clinical research fellowship to JTRW from the MRC/Welsh Assembly Government and the Margaret Temple Award from the British Medical Association. The UK samples were genotyped at the Broad Institute, USA, funded by a philanthropic gift to the Stanley Center for Psychiatric Research. The funders had no role in study design, execution, analysis and manuscript preparation. We thank two anonymous reviewers for their helpful comments. All authors reviewed and approved the final version of the manuscript. The corresponding authors had access to the full data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P F Sullivan.

Ethics declarations

Competing interests

PFS was on the SAB of Expression Analysis (Durham, NC, USA). PS is on the Board of Directors of Catalytic, Inc. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szatkiewicz, J., O'Dushlaine, C., Chen, G. et al. Copy number variation in schizophrenia in Sweden. Mol Psychiatry 19, 762–773 (2014). https://doi.org/10.1038/mp.2014.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.40

This article is cited by

Search

Quick links