Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS

Abstract

Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive thoughts and urges and repetitive, intentional behaviors that cause significant distress and impair functioning. The OCD Collaborative Genetics Association Study (OCGAS) is comprised of comprehensively assessed OCD patients with an early age of OCD onset. After application of a stringent quality control protocol, a total of 1065 families (containing 1406 patients with OCD), combined with population-based samples (resulting in a total sample of 5061 individuals), were studied. An integrative analyses pipeline was utilized, involving association testing at single-nucleotide polymorphism (SNP) and gene levels (via a hybrid approach that allowed for combined analyses of the family- and population-based data). The smallest P-value was observed for a marker on chromosome 9 (near PTPRD, P=4.13 × 107). Pre-synaptic PTPRD promotes the differentiation of glutamatergic synapses and interacts with SLITRK3. Together, both proteins selectively regulate the development of inhibitory GABAergic synapses. Although no SNPs were identified as associated with OCD at genome-wide significance level, follow-up analyses of genome-wide association study (GWAS) signals from a previously published OCD study identified significant enrichment (P=0.0176). Secondary analyses of high-confidence interaction partners of DLGAP1 and GRIK2 (both showing evidence for association in our follow-up and the original GWAS study) revealed a trend of association (P=0.075) for a set of genes such as NEUROD6, SV2A, GRIA4, SLC1A2 and PTPRD. Analyses at the gene level revealed association of IQCK and C16orf88 (both P<1 × 106, experiment-wide significant), as well as OFCC1 (P=6.29 × 105). The suggestive findings in this study await replication in larger samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Weissman MM, Bland RC, Canino GJ, Greenwald S, Hwu HG, Lee CK et al. The cross national epidemiology of obsessive compulsive disorder. The Cross National Collaborative Group. J Clin Psychiatry 1994; 55: 5–10.

    PubMed  Google Scholar 

  2. Karno M, Golding J . Obsessive compulsive disorder. In: Robins L, Regier D (eds). Psychiatric Disorders in America: the Epidemiologic Catchment Area Study. Free Press: New York, NY, USA, 1991 pp 204–219.

    Google Scholar 

  3. Murray C, Lopez A . The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. vol. 1. Harvard University Press: Cambridge, 1996.

    Google Scholar 

  4. Nestadt G, Samuels J, Riddle M, Bienvenu OJ 3rd, Liang KY, LaBuda M et al. A family study of obsessive-compulsive disorder. Arch Gen Psychiatry 2000; 57: 358–363.

    Article  CAS  PubMed  Google Scholar 

  5. Riddle MA, Scahill L, King R, Hardin MT, Towbin KE, Ort SI et al. Obsessive compulsive disorder in children and adolescents: phenomenology and family history. J Am Acad Child Adolesc Psychiatry 1990; 29: 766–772.

    Article  CAS  PubMed  Google Scholar 

  6. Mataix-Cols D, Boman M, Monzani B, Ruck C, Serlachius E, Langstrom N et al. Population-based, multigenerational family clustering study of obsessive-compulsive disorder. JAMA Psychiatry 2013; 70: 709–717.

    Article  PubMed  Google Scholar 

  7. Hanna GL, Veenstra-VanderWeele J, Cox NJ, Boehnke M, Himle JA, Curtis GC et al. Genome-wide linkage analysis of families with obsessive-compulsive disorder ascertained through pediatric probands. Am J Med Genet 2002; 114: 541–552.

    Article  PubMed  Google Scholar 

  8. Willour VL, Yao Shugart Y, Samuels J, Grados M, Cullen B, Bienvenu OJ 3rd et al. Replication study supports evidence for linkage to 9p24 in obsessive-compulsive disorder. Am J Hum Genet 2004; 75: 508–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shugart YY, Samuels J, Willour VL, Grados MA, Greenberg BD, Knowles JA et al. Genomewide linkage scan for obsessive-compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q, and 6q. Mol Psychiatry 2006; 11: 763–770.

    Article  CAS  PubMed  Google Scholar 

  10. Nestadt G, Grados M, Samuels JF . Genetics of obsessive-compulsive disorder. Psychiatric Clin North Am 2010; 33: 141–158.

    Article  Google Scholar 

  11. Pittenger C, Bloch MH, Williams K . Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther 2011; 132: 314–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu K, Hanna GL, Rosenberg DR, Arnold PD . The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol Biochem Behav 2012; 100: 726–735.

    Article  CAS  PubMed  Google Scholar 

  13. Arnold PD, Sicard T, Burroughs E, Richter MA, Kennedy JL . Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch Gen Psychiatry 2006; 63: 769–776.

    Article  CAS  PubMed  Google Scholar 

  14. Dickel DE, Veenstra-VanderWeele J, Cox NJ, Wu X, Fischer DJ, Van Etten-Lee M et al. Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder. Arch Gen Psychiatry 2006; 63: 778–785.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Adamczyk A, Shugart YY, Samuels JF, Grados MA, Greenberg BD et al. A screen of SLC1A1 for OCD-related alleles. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 675–679.

    Article  CAS  PubMed  Google Scholar 

  16. Samuels J, Wang Y, Riddle MA, Greenberg BD, Fyer AJ, McCracken JT et al. Comprehensive family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 472–477.

    Article  PubMed  Google Scholar 

  17. Shugart YY, Wang Y, Samuels JF, Grados MA, Greenberg BD, Knowles JA et al. A family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder in 378 families. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 886–892.

    Article  CAS  PubMed  Google Scholar 

  18. Stewart SE, Platko J, Fagerness J, Birns J, Jenike E, Smoller JW et al. A genetic family-based association study of OLIG2 in obsessive-compulsive disorder. Arch Gen Psychiatry 2007; 64: 209–214.

    Article  CAS  PubMed  Google Scholar 

  19. Wendland JR, Moya PR, Timpano KR, Anavitarte AP, Kruse MR, Wheaton MG et al. A haplotype containing quantitative trait loci for SLC1A1 gene expression and its association with obsessive-compulsive disorder. Arch Gen Psychiatry 2009; 66: 408–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stewart SE, Mayerfeld C, Arnold PD, Crane JR, O'Dushlaine C, Fagerness JA et al. Meta-analysis of association between obsessive-compulsive disorder and the 3' region of neuronal glutamate transporter gene SLC1A1. Am J Med Genet B Neuropsychiatr Genet 2013; 162B: 367–379.

    Article  CAS  PubMed  Google Scholar 

  21. Stewart SE, Yu D, Scharf JM, Neale BM, Fagerness JA, Mathews CA et al. Genome-wide association study of obsessive-compulsive disorder. Mol Psychiatry 2013; 18: 788–798.

    Article  CAS  PubMed  Google Scholar 

  22. Consortium GP, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  Google Scholar 

  23. American Psychiatric Association, Task Force on DSM-IV Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. 4th edn American Psychiatric Association: Washington, DC, USA (1994). pp 886.

    Google Scholar 

  24. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat Genet 2010; 42: 781–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 2007; 39: 1181–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lasky-Su J, Won S, Mick E, Anney RJ, Franke B, Neale B et al. On genome-wide association studies for family-based designs: an integrative analysis approach combining ascertained family samples with unselected controls. Am J Hum Genet 2010; 86: 573–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM . PBAT: tools for family-based association studies. Am J Hum Genet 2004; 74: 367–369.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Willer CJ, Li Y, Abecasis GR . METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010; 26: 2190–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pedroso I, Breen G . Gene set analysis and network analysis for genome-wide association studies. Cold Spring Harb Protoc 2011; 2011: 1071–1079.

    Article  Google Scholar 

  31. Pedroso I, Lourdusamy A, Rietschel M, Nothen MM, Cichon S, McGuffin P et al. Common genetic variants and gene-expression changes associated with bipolar disorder are over-represented in brain signaling pathway genes. Biol Psychiatry 2012; 72: 311–317.

    Article  CAS  PubMed  Google Scholar 

  32. International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–796.

    Article  Google Scholar 

  33. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F . Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010; 26: 2069–2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alexeyenko A, Schmitt T, Tjarnberg A, Guala D, Frings O, Sonnhammer EL . Comparative interactomics with Funcoup 2.0. Nucleic Acids Res 2012; 40: D821–D828.

    Article  CAS  PubMed  Google Scholar 

  35. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  36. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  38. Rietschel M, Mattheisen M, Degenhardt F, Genetic R, Outcome in P, Muhleisen TW et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 2012; 17: 906–917.

    Article  CAS  PubMed  Google Scholar 

  39. Chagnon MJ, Uetani N, Tremblay ML . Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases. Biochem Cell Biol 2004; 82: 664–675.

    Article  CAS  PubMed  Google Scholar 

  40. Dunah AW, Hueske E, Wyszynski M, Hoogenraad CC, Jaworski J, Pak DT et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat Neurosci 2005; 8: 458–467.

    Article  CAS  PubMed  Google Scholar 

  41. Woo J, Kwon SK, Choi S, Kim S, Lee JR, Dunah AW et al. Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 2009; 12: 428–437.

    Article  CAS  PubMed  Google Scholar 

  42. Kwon SK, Woo J, Kim SY, Kim H, Kim E . Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol Chem 2010; 285: 13966–13978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH et al. Postsynaptic TrkC and presynaptic PTPsigma function as a bidirectional excitatory synaptic organizing complex. Neuron 2011; 69: 287–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takahashi H, Katayama K, Sohya K, Miyamoto H, Prasad T, Matsumoto Y et al. Selective control of inhibitory synapse development by Slitrk3-PTPdelta trans-synaptic interaction. Nat Neurosci 2012; 15: 389–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 2005; 310: 317–320.

    Article  CAS  PubMed  Google Scholar 

  46. Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med 2010; 16: 598–602. 591p following 602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uetani N, Kato K, Ogura H, Mizuno K, Kawano K, Mikoshiba K et al. Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J 2000; 19: 2775–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jaafari N, Frasca M, Rigalleau F, Rachid F, Gil R, Olie JP et al. Forgetting what you have checked: a link between working memory impairment and checking behaviors in obsessive-compulsive disorder. Eur Psychiatry 2013; 28: 87–93.

    Article  CAS  PubMed  Google Scholar 

  49. Schormair B, Kemlink D, Roeske D, Eckstein G, Xiong L, Lichtner P et al. PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nat Genet 2008; 40: 946–948.

    Article  CAS  PubMed  Google Scholar 

  50. Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 2010; 15: 637–646.

    Article  CAS  PubMed  Google Scholar 

  51. Mas S, Plana MT, Castro-Fornieles J, Gasso P, Lafuente A, Moreno E et al. Common genetic background in anorexia nervosa and obsessive compulsive disorder: preliminary results from an association study. J Psychiatr Res 2013; 47: 747–754.

    Article  PubMed  Google Scholar 

  52. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 2009; 459: 528–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang K, Zhang H, Bloss CS, Duvvuri V, Kaye W, Schork NJ et al. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol Psychiatry 2011; 16: 949–959.

    Article  CAS  PubMed  Google Scholar 

  54. Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 2007; 448: 894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL . The human disease network. Proc Natl Acad Sci USA 2007; 104: 8685–8690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sundaram SK, Huq AM, Sun Z, Yu W, Bennett L, Wilson BJ et al. Exome sequencing of a pedigree with Tourette syndrome or chronic tic disorder. Ann Neurol 2011; 69: 901–904.

    Article  CAS  PubMed  Google Scholar 

  57. Johnson AD, Handsaker RE, Pulit S, Nizzari MM, O'Donnell CJ, de Bakker PIW . SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008; 24: 2938–2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The OCD Collaborative Genetics Association Study (OCGAS) is a collaborative research study and was funded by the following NIMH Grant Numbers: MH071507, MH079489, MH079487, MH079488 and MH079494. Y-YS and H-DQ were also supported by the Intramural Research Program of the NIMH. We thank the families who have participated in the study; David Houseman, PhD, Kathleen Merikangas, PhD, and Alec Wilson, PhD, for consultation; and the clinicians, study managers and clinical interviewers at the respective study sites for their efforts in participant recruitment and clinical assessments: Columbia University: Blair Simpson, MD, PhD, Julianna Stevens, BA Katie Buchholz; Johns Hopkins University: Graham Redgrave, MD, Krista Vermillion, BA, Janice Krasnow, PhD, Jana Drew, PhD, Melissa Meyers, PhD, and Margaret Schlossberg, PhD; Harvard/Massachusetts General Hospital: Elizabeth Mancuso, BA, Alyssa Faro, BA, Ashley Brown, BA, Kesley Ramsay, BA; National Institute of Mental Health (NIMH): Theresa B DeGuzman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Nestadt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattheisen, M., Samuels, J., Wang, Y. et al. Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS. Mol Psychiatry 20, 337–344 (2015). https://doi.org/10.1038/mp.2014.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.43

This article is cited by

Search

Quick links