Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings

Abstract

Major depression is a complex and severe psychiatric disorder whose symptomatology encompasses a critical shift in awareness, especially in the balance from external to internal mental focus. This is reflected by unspecific somatic symptoms and the predominance of the own cognitions manifested in increased self-focus and rumination. We posit here that sufficient empirical data has accumulated to build a coherent biologic model that links these psychologic concepts and symptom dimensions to observed biochemical, cellular, regional and neural network deficits. Specifically, deficits in inhibitory γ-aminobutyric acid regulating excitatory cell input/output and local cell circuit processing of information in key brain regions may underlie the shift that is observed in depressed subjects in resting-state activities between the perigenual anterior cingulate cortex and the dorsolateral prefrontal cortex. This regional dysbalance translates at the network level in a dysbalance between default-mode and executive networks, which psychopathologically surfaces as a shift in focus from external to internal mental content and associated symptoms. We focus here on primary evidence at each of those levels and on putative mechanistic links between those levels. Apart from its implications for neuropsychiatric disorders, our model provides for the first time a set of hypotheses for cross-level mechanisms of how internal and external mental contents may be constituted and balanced in healthy subjects, and thus also contributes to the neuroscientific debate on the neural correlates of consciousness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. WHO. World Health Organization—The Global Burden of Disease—2004 update. WHO Library: Geneva, Switzerland, 2008.

  2. Mayberg HS . Modulating limbic–cortical circuits in depression: targets of antidepressant treatments. Semin Clin Neuropsychiatry 2002; 7: 255–268.

    Article  PubMed  Google Scholar 

  3. Belmaker RH, Agam G . Major depressive disorder. N Engl J Med 2008; 358: 55–68.

    Article  CAS  PubMed  Google Scholar 

  4. Kupfer DJ, Frank E, Phillips ML . Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 2012; 379: 1045–1055.

    Article  PubMed  Google Scholar 

  5. Mayberg HS . Positron emission tomography imaging in depression: a neural systems perspective. Neuroimag Clin N Am 2003; 13: 805–815.

    Article  Google Scholar 

  6. Holtzheimer PE, Mayberg HS . Stuck in a rut: rethinking depression and its treatment. Trends Neurosci 2011; 34: 1–9.

    Article  CAS  PubMed  Google Scholar 

  7. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A et al. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 2007; 10: 1515–1517.

    Article  CAS  PubMed  Google Scholar 

  8. Price JL, Drevets WC . Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 2012; 16: 61–71.

    Article  PubMed  Google Scholar 

  9. Northoff G, Wiebking C, Feinberg T, Panksepp J . The 'resting-state hypothesis' of major depressive disorder-a translational subcortical–cortical framework for a system disorder. Neurosci Biobehav Rev 2011; 35: 1929–1945.

    Article  PubMed  Google Scholar 

  10. Alcaro A, Panksepp J, Witczak J, Hayes DJ, Northoff G . Is subcortical–cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci Biobehav Rev 2010; 34: 592–605.

    Article  CAS  PubMed  Google Scholar 

  11. Hasler G, Northoff G . Discovering imaging endophenotypes for major depression. Mol Psychiatry 2011; 16: 604–619.

    Article  CAS  PubMed  Google Scholar 

  12. Fitzgerald PB, Sritharan A, Daskalakis ZJ, de Castella AR, Kulkarni J, Egan G . A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression. J Clin Psychopharmacol 2007; 27: 488–492.

    Article  PubMed  Google Scholar 

  13. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010; 133 (Part 1): 161–171.

    Article  PubMed  Google Scholar 

  14. Grimm S, Ernst J, Boesiger P, Schuepbach D, Hell D, Boeker H et al. Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical–cortical midline structures. Hum Brain Mapp 2009; 30: 2617–2627.

    Article  PubMed  Google Scholar 

  15. Grimm S, Ernst J, Boesiger P, Schuepbach D, Boeker H, Northoff G . Reduced negative BOLD responses in the default-mode network and increased self-focus in depression. World J Biol Psychiatry 2011; 12: 627–637.

    Article  PubMed  Google Scholar 

  16. Menon V . Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 2011; 15: 483–506.

    Article  PubMed  Google Scholar 

  17. Wiebking C, Bauer A, de Greck M, Duncan NW, Tempelmann C, Northoff G . Abnormal body perception and neural activity in the insula in depression: an fMRI study of the depressed ‘material me’. World J Biol Psychiatry 2010; 11: 538–549.

    Article  PubMed  Google Scholar 

  18. Craig AD . How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 2009; 10: 59–70.

    Article  CAS  PubMed  Google Scholar 

  19. Panksepp J . Affective Neuroscience: the Foundations of Human and Animal Emotions. Oxford University Press: New York, NY, USA, 1998 pxii 466, pp.

    Google Scholar 

  20. Gross JJ . Emotion regulation: taking stock and moving forward. Emotion 2013; 13: 359–365.

    Article  PubMed  Google Scholar 

  21. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex advance online publication, 13 June 2013 (e-pub ahead of print).

  22. Brambilla P, Perez J, Barale F, Schettini G, Soares JC . GABAergic dysfunction in mood disorders. Mol Psychiatry 2003; 8: 721–737, 715.

    Article  CAS  PubMed  Google Scholar 

  23. Luscher B, Shen Q, Sahir N . The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 2011; 16: 383–406.

    Article  CAS  PubMed  Google Scholar 

  24. Emrich HM, von Zerssen D, Kissling W, Moller HJ, Windorfer A . Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders. Arch Psychiatr Nervenkr 1980; 229: 1–16.

    Article  CAS  PubMed  Google Scholar 

  25. Gold BI, Bowers MB, Roth RH, Sweeney DW . GABA levels in CSF of patients with psychiatric-disorders. Am J Psychiat 1980; 137: 362–364.

    Article  CAS  PubMed  Google Scholar 

  26. Petty F, Schlesser MA . Plasma GABA in affective illness. A preliminary investigation. J Affect Disord 1981; 3: 339–343.

    Article  CAS  PubMed  Google Scholar 

  27. Petty F, Sherman AD . Plasma GABA levels in psychiatric illness. J Affect Disord 1984; 6: 131–138.

    Article  CAS  PubMed  Google Scholar 

  28. Gerner RH, Hare TA . CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry 1981; 138: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  29. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC . Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64: 193–200.

    Article  CAS  PubMed  Google Scholar 

  30. Levinson AJ, Fitzgerald PB, Favalli G, Blumberger DM, Daigle M, Daskalakis ZJ . Evidence of cortical inhibitory deficits in major depressive disorder. Biol Psychiatry 2010; 67: 458–464.

    Article  CAS  PubMed  Google Scholar 

  31. Gabbay V, Mao X, Klein RG, Ely BA, Babb JS, Panzer AM et al. Anterior cingulate cortex gamma-aminobutyric acid in depressed adolescents: relationship to anhedonia. Arch Gen Psychiatry 2012; 69: 139–149.

    Article  CAS  PubMed  Google Scholar 

  32. Sanacora G, Mason GF, Rothman DL, Krystal JH . Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 2002; 159: 663–665.

    Article  PubMed  Google Scholar 

  33. Earnheart JC, Schweizer C, Crestani F, Iwasato T, Itohara S, Mohler H et al. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J Neurosci 2007; 27: 3845–3854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mayberg HS . Defining the neural circuitry of depression: toward a new nosology with therapeutic implications. Biol Psychiatry 2007; 61: 729–730.

    Article  PubMed  Google Scholar 

  35. Sanacora G, Treccani G, Popoli M . Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2012; 62: 63–77.

    Article  CAS  PubMed  Google Scholar 

  36. Spruston N . Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 2008; 9: 206–221.

    Article  CAS  PubMed  Google Scholar 

  37. Fino E, Packer AM, Yuste R . The logic of inhibitory connectivity in the neocortex. Neuroscientist 2013; 19: 228–237.

    Article  PubMed  Google Scholar 

  38. DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, Bielza C, Larranaga P, Anderson S et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 2013; 14: 202–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mao R, Schummers J, Knoblich U, Lacey CJ, Van Wart A, Cobos I et al. Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex. Cereb Cortex 2012; 22: 493–508.

    Article  PubMed  Google Scholar 

  40. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M . Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 2013; 16: 1068–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Packer AM, McConnell DJ, Fino E, Yuste R . Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. Cereb Cortex 2012; 23: 2790–2802.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fino E, Yuste R . Dense inhibitory connectivity in neocortex. Neuron 2011; 69: 1188–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A . Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci 2006; 26: 5069–5082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu H, Jeong HY, Tremblay R, Rudy B . Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4. Neuron 2013; 77: 155–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sohal VS, Zhang F, Yizhar O, Deisseroth K . Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009; 459: 698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009; 459: 663–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valentine GW, Sanacora G . Targeting glial physiology and glutamate cycling in the treatment of depression. Biochem Pharmacol 2009; 78: 431–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soumier A, Sibille E . Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology advance online publication, 1 April 2014; doi:10.1038/npp.2014.76 (e-pub ahead of print).

  49. Lin LC, Sibille E . Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front Pharmacol 2013; 4: 110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tripp A, Oh H, Guilloux JP, Martinowich K, Lewis DA, Sibille E . Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. Am J Psychiatry 2012; 169: 1194–1202.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sibille E, Morris HM, Kota RS, Lewis DA . GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol 2011; 14: 721–734.

    Article  CAS  PubMed  Google Scholar 

  52. Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K et al. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry 2012; 17: 1130–1142.

    Article  CAS  PubMed  Google Scholar 

  53. Tripp A, Kota RS, Lewis DA, Sibille E . Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol Dis 2011; 42: 116–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rajkowska G, O'Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ . GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 2007; 32: 471–482.

    Article  CAS  PubMed  Google Scholar 

  55. Maciag D, Hughes J, O'Dwyer G, Pride Y, Stockmeier CA, Sanacora G et al. Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry 2010; 67: 465–470.

    Article  CAS  PubMed  Google Scholar 

  56. Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J . Somatostatinergic systems in brain: networks and functions. Mol Cell Endocrinol 2008; 286: 75–87.

    Article  CAS  PubMed  Google Scholar 

  57. de Lecea L, del Rio JA, Criado JR, Alcantara S, Morales M, Danielson PE et al. Cortistatin is expressed in a distinct subset of cortical interneurons. J Neurosci 1997; 17: 5868–5880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karolewicz B, Maciag D, O'Dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G . Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol 2010; 13: 411–420.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao J, Bao AM, Qi XR, Kamphuis W, Luchetti S, Lou JS et al. Gene expression of GABA and glutamate pathway markers in the prefrontal cortex of non-suicidal elderly depressed patients. J Affect Disord 2012; 138: 494–502.

    Article  CAS  PubMed  Google Scholar 

  60. Merali Z, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO et al. Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. J Neurosci 2004; 24: 1478–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poulter MO, Du L, Weaver IC, Palkovits M, Faludi G, Merali Z et al. GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol Psychiatry 2008; 64: 645–652.

    Article  CAS  PubMed  Google Scholar 

  62. Poulter MO, Du L, Zhurov V, Palkovits M, Faludi G, Merali Z et al. Altered organization of GABA(A) receptor mRNA expression in the depressed suicide brain. Front Mol Neurosci 2010; 3: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102: 15653–15658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA . Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 2010; 127: 230–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fitzgerald PB, Oxley TJ, Laird AR, Kulkarni J, Egan GF, Daskalakis ZJ . An analysis of functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression. Psychiatry Res 2006; 148: 33–45.

    Article  PubMed  Google Scholar 

  66. Savitz J, Drevets WC . Bipolar and major depressive disorder: neuroimaging the developmental–degenerative divide. Neurosci Biobehav Rev 2009; 33: 699–771.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Savitz JB, Drevets WC . Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience 2009; 164: 300–330.

    Article  CAS  PubMed  Google Scholar 

  68. Lewis DA, Cruz DA, Melchitzky DS, Pierri JN . Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am J Psychiatry 2001; 158: 1411–1422.

    Article  CAS  PubMed  Google Scholar 

  69. Reiner A . The Triune Brain in Evolution. Role in Paleocerebral Functions. Paul D. MacLean. Plenum, New York, 1990. xxiv, 672 pp., illus. $75. Science 1990; 250: 303–305.

    Article  CAS  PubMed  Google Scholar 

  70. Morgane PJ, Galler JR, Mokler DJ . A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 2005; 75: 143–160.

    Article  PubMed  Google Scholar 

  71. Morgane PJ, Mokler DJ . The limbic brain: continuing resolution. Neurosci Biobehav Rev 2006; 30: 119–125.

    Article  PubMed  Google Scholar 

  72. Mesulam MM . Principles of Behavioral And Cognitive Neurology2nd eEdn.Oxford University Press: Oxford, NY, USA, 2000 pxviii 540, pp.

    Google Scholar 

  73. Ongur D, Price JL . The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000; 10: 206–219.

    Article  CAS  PubMed  Google Scholar 

  74. Paus T . Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2001; 2: 417–424.

    Article  CAS  PubMed  Google Scholar 

  75. Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B . Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol 2008; 508: 906–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K . Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 2009; 30: 2336–2355.

    Article  PubMed  Google Scholar 

  77. Vogt BA, Hof PR, Zilles K, Vogt LJ, Herold C, Palomero-Gallagher N . Cingulate area 32 homologies in mouse, rat, macaque and human: cytoarchitecture and receptor architecture. J Comp Neurol 2013; 521: 4189–4204.

    Article  PubMed  Google Scholar 

  78. Palomero-Gallagher N, Zilles K, Schleicher A, Vogt BA . Cyto- and receptor architecture of area 32 in human and macaque brains. J Comp Neurol 2013; 521: 3272–3286.

    Article  CAS  PubMed  Google Scholar 

  79. Dou W, Palomero-Gallagher N, van Tol MJ, Kaufmann J, Zhong K, Bernstein HG et al. Systematic regional variations of GABA, glutamine, and glutamate concentrations follow receptor fingerprints of human cingulate cortex. J Neurosci 2013; 33: 12698–12704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feinberg TE . From Axons to Identity: Neurological Explorations of The Nature of the Self. WW Norton & Company: New York, NY, USA and London, UK, 2009.

    Google Scholar 

  81. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2007; 62: 429–437.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Goel V, Dolan RJ . Explaining modulation of reasoning by belief. Cognition 2003; 87: B11–B22.

    Article  PubMed  Google Scholar 

  83. Northoff G, Heinzel A, Bermpohl F, Niese R, Pfennig A, Pascual-Leone A et al. Reciprocal modulation and attenuation in the prefrontal cortex: an fMRI study on emotional–cognitive interaction. Hum Brain Mapp 2004; 21: 202–212.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A . Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150–157.

    Article  CAS  PubMed  Google Scholar 

  85. Logothetis NK . What we can do and what we cannot do with fMRI. Nature 2008; 453: 869–878.

    Article  CAS  PubMed  Google Scholar 

  86. Goense J, Merkle H, Logothetis NK . High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron 2012; 76: 629–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lauritzen M, Mathiesen C, Schaefer K, Thomsen KJ . Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. NeuroImage 2012; 62: 1040–1050.

    Article  PubMed  Google Scholar 

  88. Gusnard DA, Akbudak E, Shulman GL, Raichle ME . Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 2001; 98: 4259–4264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol Psychiatry 2003; 54: 515–528.

    Article  PubMed  Google Scholar 

  90. Kuhn S, Gallinat J . Resting-state brain activity in schizophrenia and major depression: a quantitative meta-analysis. Schizophr Bull 2013; 39: 358–365.

    Article  PubMed  Google Scholar 

  91. Bermpohl F, Walter M, Sajonz B, Lucke C, Hagele C, Sterzer P et al. Attentional modulation of emotional stimulus processing in patients with major depression—alterations in prefrontal cortical regions. Neurosci Lett 2009; 463: 108–113.

    Article  CAS  PubMed  Google Scholar 

  92. Northoff G . What the brain's intrinsic activity can tell us about consciousness? A tri-dimensional view. Neurosci Biobehav Rev 2013; 37: 726–738.

    Article  PubMed  Google Scholar 

  93. Logothetis NK, Murayama Y, Augath M, Steffen T, Werner J, Oeltermann A . How not to study spontaneous activity. NeuroImage 2009; 45: 1080–1089.

    Article  PubMed  Google Scholar 

  94. Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Boorman E, MM P et al. Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol 2008; 11: 255–260.

    Article  CAS  PubMed  Google Scholar 

  95. Shaw A, Brealy J, Richardson H, Muthukumaraswamy SD, Edden RA, John Evans C et al. Marked reductions in visual evoked responses but not gamma-aminobutyric acid concentrations or gamma-band measures in remitted depression. Biol Psychiatry 2013; 73: 691–698.

    Article  CAS  PubMed  Google Scholar 

  96. Plante DT, Jensen JE, Schoerning L, Winkelman JW . Reduced gamma-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder? Neuropsychopharmacology 2012; 37: 1548–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U et al. The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 2009; 66: 478–486.

    Article  CAS  PubMed  Google Scholar 

  98. Stagg CJ, Bachtiar V, Johansen-Berg H . What are we measuring with GABA magnetic resonance spectroscopy? Commun Integr Biol 2011; 4: 573–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Seybold BA, Stanco A, Cho KK, Potter GB, Kim C, Sohal VS et al. Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex. Proc Natl Acad Sci USA 2012; 109: 13829–13834.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Stagg CJ, Bestmann S, Constantinescu AO, Moreno LM, Allman C, Mekle R et al. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol 2011; 589 (Part 23): 5845–5855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tremblay S, Beaule V, Proulx S, de Beaumont L, Marjanska M, Doyon J et al. Relationship between transcranial magnetic stimulation measures of intracortical inhibition and spectroscopy measures of GABA and glutamate+glutamine. J Neurophysiol 2013; 109: 1343–1349.

    Article  CAS  PubMed  Google Scholar 

  102. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL . A default mode of brain function. Proc Natl Acad Sci USA 2001; 98: 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buckner RL, Andrews-Hanna JR, Schacter DL . The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 2008; 1124: 1–38.

    Article  PubMed  Google Scholar 

  104. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci USA 2013; 110: 19944–19949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW . Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci USA 2009; 106: 8719–8724.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN . Wandering minds: the default network and stimulus-independent thought. Science 2007; 315: 393–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Christoff K . Undirected thought: neural determinants and correlates. Brain Res 2012; 1428: 51–59.

    Article  CAS  PubMed  Google Scholar 

  108. Qin P, Di H, Liu Y, Yu S, Gong Q, Duncan N et al. Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 2010; 31: 1993–2002.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Huang Z, Dai R, Wu X, Yang Z, Liu D, Hu J et al. The self and its resting state in consciousness: An investigation of the vegetative state. Hum Brain Mapp 2013; 35: 1997–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Northoff G, Panksepp J . The trans-species concept of self and the subcortical–cortical midline system. Trends Cogn Sci 2008; 12: 259–264.

    Article  PubMed  Google Scholar 

  111. Qin P, Northoff G . How is our self related to midline regions and the default-mode network? NeuroImage 2011; 57: 1221–1233.

    Article  PubMed  Google Scholar 

  112. Kapogiannis D, Reiter DA, Willette AA, Mattson MP . Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. NeuroImage 2013; 64: 112–119.

    Article  CAS  PubMed  Google Scholar 

  113. Duncan NW, Wiebking C, Tiret B, Marjanska M, Hayes DJ, Lyttleton O et al. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans. PLoS One 2013; 8: e60312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Flodin P, Gospic K, Petrovic P, Fransson P . Effects of L-dopa and oxazepam on resting-state functional magnetic resonance imaging connectivity: a randomized, cross-sectional placebo study. Brain Connect 2012; 2: 246–253.

    Article  PubMed  Google Scholar 

  115. Northoff G, Witzel T, Richter A, Gessner M, Schlagenhauf F, Fell J et al. GABA-ergic modulation of prefrontal spatio-temporal activation pattern during emotional processing: a combined fMRI/MEG study with placebo and lorazepam. J Cogn Neurosci 2002; 14: 348–370.

    Article  PubMed  Google Scholar 

  116. Driesen NR, McCarthy G, Bhagwagar Z, Bloch M, Calhoun V, D'Souza DC et al. Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatry 2013; 18: 1199–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Scheidegger M, Walter M, Lehmann M, Metzger C, Grimm S, Boeker H et al. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One 2012; 7: e44799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Anticevic A, Cole MW, Repovs G, Savic A, Driesen NR, Yang G et al. Connectivity, pharmacology, and computation: toward a mechanistic understanding of neural system dysfunction in schizophrenia. Front Psychiatry 2013; 4: 169.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci USA 2012; 109: 16720–16725.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Connolly CG, Wu J, Ho TC, Hoeft F, Wolkowitz O, Eisendrath S et al. Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biol Psychiatry 2013; 74: 898–907.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zeng LL, Shen H, Liu L, Hu D . Unsupervised classification of major depression using functional connectivity MRI. Hum Brain Mapp 2013; 35: 1630–1641.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Davey CG, Harrison BJ, Yucel M, Allen NB . Regionally specific alterations in functional connectivity of the anterior cingulate cortex in major depressive disorder. Psychol Med 2012; 42: 2071–2081.

    Article  CAS  PubMed  Google Scholar 

  123. Li CT, Chen LF, Tu PC, Wang SJ, Chen MH, Su TP et al. Impaired prefronto-thalamic functional connectivity as a key feature of treatment-resistant depression: a combined MEG, PET and rTMS study. PLoS One 2013; 8: e70089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ye T, Peng J, Nie B, Gao J, Liu J, Li Y et al. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder. Eur J Radiol 2012; 81: 4035–4040.

    Article  PubMed  Google Scholar 

  125. Kong L, Chen K, Tang Y, Wu F, Driesen N, Womer F et al. Functional connectivity between the amygdala and prefrontal cortex in medication-naive individuals with major depressive disorder. J Psychiatry Neurosci 2013; 38: 120117.

    Article  Google Scholar 

  126. Khadka S, Meda SA, Stevens MC, Glahn DC, Calhoun VD, Sweeney JA et al. Is aberrant functional connectivity a psychosis endophenotype? A resting state functional magnetic resonance imaging study. Biol Psychiatry 2013; 74: 458–466.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Orliac F, Naveau M, Joliot M, Delcroix N, Razafimandimby A, Brazo P et al. Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia. Schizophr Res 2013; 148: 74–80.

    Article  PubMed  Google Scholar 

  128. Mamah D, Barch DM, Repovs G . Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia. J Affect Disord 2013; 150: 601–609.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yu Y, Shen H, Zeng LL, Ma Q, Hu D . Convergent and divergent functional connectivity patterns in schizophrenia and depression. PLoS One 2013; 8: e68250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sambataro F, Wolf ND, Pennuto M, Vasic N, Wolf RC . Revisiting default mode network function in major depression: evidence for disrupted subsystem connectivity. Psychol Med advance online publication, 31 October 2013 (e-pub ahead of print).

  131. Lemogne C, Mayberg H, Bergouignan L, Volle E, Delaveau P, Lehericy S et al. Self-referential processing and the prefrontal cortex over the course of depression: a pilot study. J Affect Disord 2010; 124: 196–201.

    Article  PubMed  Google Scholar 

  132. Lemogne C, Delaveau P, Freton M, Guionnet S, Fossati P . Medial prefrontal cortex and the self in major depression. J Affect Disord 2012; 136: e1–e11.

    Article  PubMed  Google Scholar 

  133. Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J . Depression, rumination and the default network. Soc Cogn Affect Neurosci 2011; 6: 548–555.

    Article  PubMed  Google Scholar 

  134. Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E, Gotlib IH . Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol Psychiatry 2011; 70: 327–333.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhu X, Wang X, Xiao J, Liao J, Zhong M, Wang W et al. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol Psychiatry 2012; 71: 611–617.

    Article  PubMed  Google Scholar 

  136. Kuhn S, Vanderhasselt MA, De Raedt R, Gallinat J . Why ruminators won't stop: the structural and resting state correlates of rumination and its relation to depression. J Affect Disord 2012; 141: 352–360.

    Article  PubMed  Google Scholar 

  137. Northoff G . Unlocking the Brain. Volume II: Consciousness vol. 2. Oxford University Press: Oxford, NY, USA, 2013.

    Book  Google Scholar 

  138. Gabbay V, Ely BA, Li Q, Bangaru SD, Panzer AM, Alonso CM et al. Striatum-based circuitry of adolescent depression and anhedonia. J Am Acad Child Adolesc Psychiatry 2013; 52: 628–641, e613.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Venzala E, Garcia-Garcia AL, Elizalde N, Tordera RM . Social vs environmental stress models of depression from a behavioural and neurochemical approach. Eur Neuropsychopharmacol 2013; 23: 697–708.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Mental Health MH084060 and MH077159 (to ES), as well as CIHR, HDRF and EJLB-CIHR and Michael Smith Foundation (to GN). We thank both Sibille and Northoff lab members, H Aizenstein and K Erickson for feedback on the content of this manuscript, and B French for careful feedback and help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Northoff or E Sibille.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northoff, G., Sibille, E. Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol Psychiatry 19, 966–977 (2014). https://doi.org/10.1038/mp.2014.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.68

This article is cited by

Search

Quick links