Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Investigating the neuroimmunogenic architecture of schizophrenia

Abstract

The role of the immune system in schizophrenia remains controversial despite numerous studies to date. Most studies have profiled expression of select genes or proteins in peripheral blood, but none have focused on the expression of canonical pathways that mediate overall immune response. The current study used a systematic genetic approach to investigate the role of the immune system in a large sample of post-mortem brain of patients with schizophrenia: RNA sequencing was performed to assess the differential expression of 561 immune genes and 20 immune pathways in dorsolateral prefrontal cortex (DLPFC) (144 schizophrenia and 196 control subjects) and hippocampus (83 schizophrenia and 187 control subjects). The effect of RNA quality on gene expression was found to be highly correlated with the effect of diagnosis even after adjustment for observable RNA quality parameters (i.e. RNA integrity), thus this confounding relationship was statistically controlled using principal components derived from the gene expression matrix. In DLPFC, 23 immune genes were found to be differentially expressed (false discovery rate <0.05), of which seven genes replicated in both directionality and at nominal significance (P<0.05) in an independent post-mortem DLPFC data set (182 schizophrenia and 212 control subjects), although notably at least five of these genes have prominent roles in pathways other than immune function and overall the effect sizes were minimal (fold change <1.1). In the hippocampus, no individual immune genes were identified to be differentially expressed, and in both DLPFC and hippocampus none of the individual immune pathways were relatively differentially expressed. Further, genomic schizophrenia risk profiles scores were not correlated with the expression of individual immune pathways or differentially expressed genes. Overall, past reports claiming a primary pathogenic role of the immune system intrinsic to the brain in schizophrenia could not be confirmed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bleuler E . Dementia Praecox or the Group of Schizophrenias. International Universities Press: New York, NY, 1950.

    Google Scholar 

  2. Kety SS . The significance of genetic factors in the etiology of schizophrenia: results from the national study of adoptees in Denmark. J Psychiatric Res 1987; 21: 423–429.

    Article  CAS  Google Scholar 

  3. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carter CS, Bullmore ET, Harrison P . Is there a flame in the brain in psychosis? Biol Psychiatry 2014; 75: 258–259.

    Article  PubMed  Google Scholar 

  6. Muller N, Weidinger E, Leitner B, Schwarz MJ . The role of inflammation in schizophrenia. Front Neurosci 2015; 9: 372.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB . Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2015; 2: 258–270.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E . Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 2008; 63: 801–808.

    Article  CAS  PubMed  Google Scholar 

  9. Upthegrove R, Manzanares-Teson N, Barnes NM . Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 2014; 155: 101–108.

    Article  PubMed  Google Scholar 

  10. Garver DL, Tamas RL, Holcomb JA . Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology 2003; 28: 1515–1520.

    Article  CAS  PubMed  Google Scholar 

  11. Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E et al. Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology 2014; 41: 23–32.

    Article  CAS  PubMed  Google Scholar 

  12. de Witte L, Tomasik J, Schwarz E, Guest PC, Rahmoune H, Kahn RS et al. Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 2014; 154: 23–29.

    Article  PubMed  Google Scholar 

  13. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B . Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mednick SA, Machon RA, Huttunen MO, Bonett D . Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 1988; 45: 189–192.

    Article  CAS  PubMed  Google Scholar 

  15. Brown AS . Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 2006; 32: 200–202.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brown AS, Derkits EJ . Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 2010; 167: 261–280.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Benros ME, Eaton WW, Mortensen PB . The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry 2014; 75: 300–306.

    Article  PubMed  Google Scholar 

  18. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E et al. Microglia activation in recent-onset schizophrenia: a quantitative (R-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64: 820–822.

    Article  PubMed  Google Scholar 

  19. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC . Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50: 1801–1807.

    Article  PubMed  Google Scholar 

  20. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [C]PBR28 PET Brain Imaging Study. Am J Psychiatry 2015; 173: 44–52.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 2006; 112: 305–316.

    Article  CAS  PubMed  Google Scholar 

  22. Radewicz K, Garey LJ, Gentleman SM, Reynolds R . Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000; 59: 137–150.

    Article  CAS  PubMed  Google Scholar 

  23. Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P et al. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 1999; 4: 145–154.

    Article  CAS  PubMed  Google Scholar 

  24. Meyer U . Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014; 75: 307–315.

    Article  CAS  PubMed  Google Scholar 

  25. Meyer U, Feldon J . Epidemiology-driven neurodevelopmental animal models of schizophrenia. Progr Neurobiol 2010; 90: 285–326.

    Article  Google Scholar 

  26. Meyer U, Feldon J . To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology 2012; 62: 1308–1321.

    Article  CAS  PubMed  Google Scholar 

  27. Moreno JL, Kurita M, Holloway T, Lopez J, Cadagan R, Martinez-Sobrido L et al. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT(2)A and mGlu(2) receptors in the adult offspring. J Neurosci 2011; 31: 1863–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M . Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 2006; 59: 546–554.

    Article  CAS  PubMed  Google Scholar 

  29. Vuillermot S, Weber L, Feldon J, Meyer U . A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci 2010; 30: 1270–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coussons-Read ME, Okun ML, Nettles CD . Psychosocial stress increases inflammatory markers and alters cytokine production across pregnancy. Brain Behav Immun 2007; 21: 343–350.

    Article  CAS  PubMed  Google Scholar 

  31. Powell ND, Sloan EK, Bailey MT, Arevalo JM, Miller GE, Chen E et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. Proc Natl Acad Sci USA 2013; 110: 16574–16579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci USA 2012; 109: 5995–5999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  PubMed Central  CAS  Google Scholar 

  34. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 2015; 18: 199–209.

    Article  CAS  Google Scholar 

  35. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016; 530: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 206–214.

    Article  CAS  PubMed  Google Scholar 

  37. Horvath S, Mirnics K . Immune system disturbances in schizophrenia. Biol Psychiatry 2014; 75: 316–323.

    Article  CAS  PubMed  Google Scholar 

  38. Volk DW, Chitrapu A, Edelson JR, Roman KM, Moroco AE, Lewis DA . Molecular mechanisms and timing of cortical immune activation in schizophrenia. Am J Psychiatry 2015; 172: 1112–1121.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim S, Hwang Y, Webster MJ, Lee D . Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Mol Psychiatry 2015; 21: 376–385.

    Article  PubMed  CAS  Google Scholar 

  40. Arion D, Unger T, Lewis DA, Levitt P, Mirnics K . Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry 2007; 62: 711–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E . Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 2007; 7: 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Heng TS, Painter MW . The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 2008; 9: 1091–1094.

    Article  CAS  PubMed  Google Scholar 

  43. Shay T, Kang J . Immunological Genome Project and systems immunology. Trends immunol 2013; 34: 602–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meehan TF, Vasilevsky NA, Mungall CJ, Dougall DS, Haendel MA, Blake JA et al. Ontology based molecular signatures for immune cell types via gene expression analysis. BMC Bioinform 2013; 14: 263.

    Article  Google Scholar 

  45. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523: 337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ransohoff RM, Engelhardt B . The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012; 12: 623–635.

    Article  CAS  PubMed  Google Scholar 

  47. Shechter R, London A, Schwartz M . Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 2013; 13: 206–218.

    Article  CAS  PubMed  Google Scholar 

  48. Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontius J et al. ImmPort: disseminating data to the public for the future of immunology. Immunol Res 2014; 58: 234–239.

    Article  CAS  PubMed  Google Scholar 

  49. Ortutay C, Vihinen M . Immunome: a reference set of genes and proteins for systems biology of the human immune system. Cell Immunol 2006; 244: 87–89.

    Article  CAS  PubMed  Google Scholar 

  50. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. Nature 2005; 437: 1032–1037.

    Article  CAS  PubMed  Google Scholar 

  51. Kanehisa M, Goto S . KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000; 28: 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M . Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014; 42 (Database issue): D199–D205.

    Article  CAS  PubMed  Google Scholar 

  53. Glass CK, Ogawa S . Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol 2006; 6: 44–55.

    Article  CAS  PubMed  Google Scholar 

  54. Srivastava P . Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2002; 2: 185–194.

    Article  CAS  PubMed  Google Scholar 

  55. Kaminska B . MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 2005; 1754: 253–262.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang W, Liu HT . MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002; 12: 9–18.

    Article  CAS  PubMed  Google Scholar 

  57. Lipska BK, Deep-Soboslay A, Weickert CS, Hyde TM, Martin CE, Herman MM et al. Critical factors in gene expression in postmortem human brain: focus on studies in schizophrenia. Biol Psychiatry 2006; 60: 650–658.

    Article  CAS  PubMed  Google Scholar 

  58. Jaffe AE, Shin J, Collado-Torres L, Leek JT, Tao R, Li C et al. Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nat Neurosci 2015; 18: 154–161.

    Article  CAS  PubMed  Google Scholar 

  59. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011; 478: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD . The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England) 2012; 28: 882–883.

    Article  CAS  Google Scholar 

  62. Jaffe AE, Tao R, Norris A, Kealhofer M, Nellore A, Jia Y et al. A framework for RNA quality correction in differential expression analysis. bioRxiv 2016; http://bioRxiv.org/content/early/2016/09/09/074245.

  63. Sonntag KC, Tejada G, Subburaju S, Berretta S, Benes FM, Woo TU . Limited predictability of postmortem human brain tissue quality by RNA integrity numbers. J Neurochem 2016; 138: 53–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weinberger DR, Berman KF, Zec RF . Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986; 43: 114–124.

    Article  CAS  PubMed  Google Scholar 

  65. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebr Cortex (New York, NY: 1991) 2000; 10: 1078–1092.

    CAS  Google Scholar 

  66. Goldman-Rakic PS . Regional and cellular fractionation of working memory. Proc Natl Acad Sci USA 1996; 93: 13473–13480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anticevic A, Repovs G, Krystal JH, Barch DM . A broken filter: prefrontal functional connectivity abnormalities in schizophrenia during working memory interference. Schizophr Res 2012; 141: 8–14.

    Article  PubMed  Google Scholar 

  68. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 2016; 19: 1442–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Birnbaum R, Jaffe AE, Hyde TM, Kleinman JE, Weinberger DR . Prenatal expression patterns of genes associated with neuropsychiatric disorders. Am J Psychiatry 2014; 171: 758–767.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  71. Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A et al. Transcriptional landscape of the prenatal human brain. Nature 2014; 508: 199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lipska BK, Jaskiw GE, Weinberger DR . Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 1993; 9: 67–75.

    Article  CAS  PubMed  Google Scholar 

  73. Heckers S . Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 2001; 11: 520–528.

    Article  CAS  PubMed  Google Scholar 

  74. Brambilla P, Perlini C, Rajagopalan P, Saharan P, Rambaldelli G, Bellani M et al. Illness severity and poor social functioning relate to hippocampal shrinkage in schizophrenia: a three-dimensional mapping study. Br J Psychiatry 2013; 202: 50–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Heckers S, Konradi C . Hippocampal neurons in schizophrenia. J Neural Transm (Vienna, Austria : 1996) 2002; 109: 891–905.

    Article  CAS  Google Scholar 

  76. Grace AA . Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 2012; 62: 1342–1348.

    Article  CAS  PubMed  Google Scholar 

  77. Goldman-Rakic PS, Selemon LD, Schwartz ML . Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 1984; 12: 719–743.

    Article  CAS  PubMed  Google Scholar 

  78. Sharma S, Murphy A, Howrylak J, Himes B, Cho MH, Chu JH et al. The impact of self-identified race on epidemiologic studies of gene expression. Genet Epidemiol 2011; 35: 93–101.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Khush KK, Pham MX, Teuteberg JJ, Kfoury AG, Deng MC, Kao A et al. Gene expression profiling to study racial differences after heart transplantation. J Heart Lung Transplant 2015; 34: 970–977.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Goodison S . Gene expression profiling of breast cancer in ethnic populations: an aid to gene discovery for the benefit of all. Breast J 2005; 11: 89–91.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jovov B, Araujo-Perez F, Sigel CS, Stratford JK, McCoy AN, Yeh JJ et al. Differential gene expression between African American and European American colorectal cancer patients. PLoS ONE 2012; 7: e30168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science (New York, NY) 2016; 353: aad8670.

    Article  CAS  Google Scholar 

  83. Simon AK, Hollander GA, McMichael A . Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 2015; 282: 20143085.

    PubMed  PubMed Central  Google Scholar 

  84. Holt PG, Jones CA . The development of the immune system during pregnancy and early life. Allergy 2000; 55: 688–697.

    Article  CAS  PubMed  Google Scholar 

  85. Gaunt G, Ramin K . Immunological tolerance of the human fetus. Am J Perinatol 2001; 18: 299–312.

    Article  CAS  PubMed  Google Scholar 

  86. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 2016; 535: 425–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. IPA, QIAGEN Redwood City. Available at: www.qiagen.com/ingenuity (last accessed October 2016).

Download references

Acknowledgements

The replication data set used for the analyses in the manuscript were generated as part of the CommonMind Consortium supported by funding from Takeda Pharmaceuticals Company Limited, F Hoffman-La Roche and NIH Grants R01MH085542, R01MH093725, P50MH066392, P50MH080405, R01MH097276, RO1-MH-075916, P50M096891, P50MH084053S1, R37MH057881 and R37MH057881S1, HHSN271201300031C, AG02219, AG05138 and MH06692. Brain tissue for the study was obtained from the following brain-bank collections: the Mount Sinai NIH Brain and Tissue Repository, the University of Pennsylvania Alzheimer’s Disease Core Center, the University of Pittsburgh NeuroBioBank and Brain and Tissue Repositories and the NIMH Human Brain Collection Core. CMC Leadership: P Sklar, J Buxbaum (Icahn School of Medicine at Mount Sinai), B Devlin, D Lewis (University of Pittsburgh), R Gur, C-G Hahn (University of Pennsylvania), K Hirai, H Toyoshiba (Takeda Pharmaceuticals Company), E Domenici, L Essioux (F Hoffman-La Roche), L Mangravite, M Peters (Sage Bionetworks), T Lehner, B Lipska (NIMH).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D R Weinberger.

Ethics declarations

Competing interests

CRS, PO, JQ, JRW, HSX and ARW are employees and stockholders of Pfizer. ED, LE and TK-T are employees and stockholders of F Hoffmann-La Roche, AG. DCA, JNC, DAC, HW, BE, PE, YL, LN, CR, JES, RMS and H-RQ are employees and stockholders of Eli Lilly and Company. KM is an employee of TransThera Consulting and an ex-employee of Eli Lilly and Company. MD is an employee and stockholder of H Lundbeck A/S. MM and TS are employees of Astellas Pharma. NJB, AJC and QW are employees and stockholders of AstraZeneca LP. HM, HK, MF and WCD are employees of Janssen Research and Development, LLC, and of Johnson and Johnson, and stockholders of Johnson and Johnson. JHS, AEJ, YJ, RES, AD-S, TMH, JEK and DRW are employees of the Lieber Institute for Brain Development, a non-profit organization. The authors declare no conflict of interest. Funding for the research currently reported is from the Lieber Institute for Brain Development, the BrainSeq Consortium and the Division of Intramural Research Programs, National Institute of Mental Health.

Additional information

Members of BrainSeq Christian R Schubert, Patricio O'Donnell, Jie Quan, Jens R Wendland, Hualin S Xi, Ashley R Winslow, Enrico Domenici, Laurent Essioux, Tony Kam-Thong, David C Airey, John N Calley, David A Collier, Hong Wang, Brian Eastwood, Philip Ebert, Yushi Liu, Laura Nisenbaum, Cara Ruble, James Scherschel, Ryan Matthew Smith, Hui-Rong Qian, Kalpana Merchant, Michael Didriksen, Mitsuyuki Matsumoto, Takeshi Saito, Nicholas J Brandon, Alan J Cross, Qi Wang, Husseini Manji, Hartmuth Kolb, Maura Furey, Wayne C Drevets, Joo Heon Shin, Andrew E Jaffe, Yankai Jia, Richard E Straub, Amy Deep-Soboslay, Thomas M Hyde, Joel E Kleinman, Daniel R Weinberger.

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birnbaum, R., Jaffe, A., Chen, Q. et al. Investigating the neuroimmunogenic architecture of schizophrenia. Mol Psychiatry 23, 1251–1260 (2018). https://doi.org/10.1038/mp.2017.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.89

This article is cited by

Search

Quick links