Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aging renders the brain vulnerable to amyloid β-protein neurotoxicity

Abstract

The formation of fibrillar deposits of amyloid β protein (Aβ) in the brain is a pathological hallmark of Alzheimer's disease1,2 (AD). A central question is whether Aβ plays a direct role in the neurodegenerative process in AD (refs. 3,4). The involvement of Aβ in the neurodegenerative process is suggested by the neurotoxicity of the fibrillar form of Aβ in vitro5–11. However, mice transgenic for the Aβ precursor protein that develop amyloid deposits in the brain do not show the degree of neuronal loss or tau phosphorylation found in AD (refs. 12–16). Here we show that microinjection of plaque-equivalent concentrations of fibrillar, but not soluble, Aβ in the aged rhesus monkey cerebral cortex results in profound neuronal loss, tau phosphorylation and microglial proliferation. Fibrillar Aβ at plaque-equivalent concentrations is not toxic in the young adult rhesus brain. Aβ toxicity in vivo is also highly species-specific; toxicity is greater in aged rhesus monkeys than in aged marmoset monkeys, and is not significant in aged rats. These results suggest that Aβ neurotoxicity in vivo is a pathological response of the aging brain, which is most pronounced in higher order primates. Thus, longevity may contribute to the unique susceptibility of humans to Alzheimer's disease by rendering the brain vulnerable to Aβ neurotoxicity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  Google Scholar 

  2. Masters, C.L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82, 4245–4249 (1985).

    Article  CAS  Google Scholar 

  3. Yankner, B.A. Mechanisms of Neuronal Degeneration in Alzheimer's Disease. Neuron 16, 921–932 (1996).

    Article  CAS  Google Scholar 

  4. Selkoe, D.J. Alzheimer's disease: Gentoypes, phenotypes and treatments. Science 275, 630–631 (1997).

    Article  CAS  Google Scholar 

  5. Yankner, B.A., Duffy, L.K. & Kirschner, D.A. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250, 279–282 (1990).

    Article  CAS  Google Scholar 

  6. Pike, C.J., Walencewicz, A.J., Glabe, C.G. & Cotman, C.W. In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563, 311–314 (1991).

    Article  CAS  Google Scholar 

  7. Busciglio, J., Lorenzo, A. & Yankner, B.A. Methodological variables in the assessment of β amyloid neurotoxicity. Neurobiol. Aging 13, 609–612 (1992).

    Article  CAS  Google Scholar 

  8. Mattson, M.P., Tomaselli, K.J. & Rydel, R.E. Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res. 621, 35–49 (1993).

    Article  CAS  Google Scholar 

  9. Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G. & Cotman, C.W. Neurodegeneration induced by β-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci.. 13, 1676–1687 (1993).

    Article  CAS  Google Scholar 

  10. Lorenzo, A. & Yankner, B.A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. USA 91, 12243–12247 (1994).

    Article  CAS  Google Scholar 

  11. Howlett, D.R. et al. Aggregation state and neurotoxic properties of Alzheimer beta-amyloid peptide. Neurodegen. 4, 23–32 (1995).

    Article  CAS  Google Scholar 

  12. Quon, D. et al. Formation of β-amyloid protein deposits in brains of transgenic mice. Nature 352, 239–241 (1991).

    Article  CAS  Google Scholar 

  13. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  Google Scholar 

  14. Hsiao, K. et al. Correlative memory deficits, Abeta elevation and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  Google Scholar 

  15. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. U.S.A. 94, 13287–13292 (1997).

    Article  CAS  Google Scholar 

  16. Irizarry, M.C. et al. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J. Neurosci. 17, 7053–7059 (1997).

    Article  CAS  Google Scholar 

  17. Selkoe, D.J., Abraham, C.R., Podlisny, M.B. & Duffy, L.B. Isolation of low molecular wieght proteins from amyloid plaque fibers in Alzheimer's disease. J. Neurochem. 46, 1820–1834 (1986).

    Article  CAS  Google Scholar 

  18. Struble, R.G., Price, D.L., Jr., Cork, L.C. & Price, D.L. Senile plaques in cortex of aged normal monkey. Brain Res. 361, 267–275 (1985).

    Article  CAS  Google Scholar 

  19. Selkoe, D.J., Bell, D.S., Podlisny, M.B., Price, D.L. & Cork, L.C. Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science 235, 873–877 (1987).

    Article  CAS  Google Scholar 

  20. Mandelkov, E.M. et al. Microtubule-associated protein tau, paired helical filaments, and phosphorylation. Ann. NY Acad. Sci. 695, 209–216 (1993).

    Article  Google Scholar 

  21. Kowall, N.W., Beal, M.F., Busciglio, J., Duffy, L.K. & Yankner, B.A. An in vivo model for the neurodegenerative effects of β amyloid and protection by substance P. Proc. Natl. Acad. Sci. USA 88, 7247–7251 (1991).

    Article  CAS  Google Scholar 

  22. Frautschy, S.A., Baird, A. & Cole, G.M. Effects of injected Alzheimer β-amyloid cores in rat brain. Proc. Natl. Acad. Sci. USA 88, 8362–8366 (1991).

    Article  CAS  Google Scholar 

  23. Busciglio, J., Lorenzo, A., Yeh, J. & Yankner, B.A. Beta-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888 (1995).

    Article  CAS  Google Scholar 

  24. Kowall, N.W., McKee, A.C., Yankner, B.A. & Beal, M.F. In vivo neurotoxicity of beta-amyloid [β(1–40)] and the β(25–35) fragment. Neurobiol. Aging 13, 537–542 (1992).

    Article  CAS  Google Scholar 

  25. Podlisny, M.B. et al. Microinjection of synthetic amyloid beta-protein in monkey cerebral cortex fails to produce acute neurotoxicity. Am. J. Path. 142, 17–24 (1993).

    CAS  PubMed  Google Scholar 

  26. May, P.C. et al. Beta-Amyloid peptide in vitro toxicity: lot-to-lot variability. Neurobiol. Aging 13, 605–607 (1992).

    Article  CAS  Google Scholar 

  27. Walker, L.C., Masters, C., Beyreuther, K. & Price, D.L. Amyloid in the brains of aged normal monkey. Acta Neuropathol. 80, 381–387 (1990).

    Article  CAS  Google Scholar 

  28. Bons, N., Mestre, N. & Petter, A. Senile plaques and neurofibrillary changes in the brain of an aged lemurain primate, microcebus murinus. Neurobiol. Aging 13, 99–105 (1991).

    Article  Google Scholar 

  29. Martin, L.J., Pardo, C.A., Cork, L.C. & Price, D.L. Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am. J. Pathol. 145, 1358–1381 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Crook, R. et al. A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nature Med. 4, 452–455 (1998).

    Article  CAS  Google Scholar 

  31. Wisniewski, K.E., Wisniewski, H.M. & Wen, G.Y. Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Ann. Neurol. 17, 278–282 (1985).

    Article  CAS  Google Scholar 

  32. Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-β. Nature 374, 647–650 (1995).

    Article  CAS  Google Scholar 

  33. Giulian, D. et al. Specific domains of β-amyloid from Alzheimer plague elicit neuron killing in human microglia. J. Neurosci. 16, 6021–6037 (1996).

    Article  CAS  Google Scholar 

  34. Weldon, D.T. et al. Fibrillar βamyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo J. Neurosci. 18, 2161–2173 (1998).

    Article  CAS  Google Scholar 

  35. Frey, P., Sunderji, S. & Waridel, C. in Alzheimer's Disease: Biology, Diagnosis and Therapeutics (eds. Iqbal, K., Winblad, B., Nishimura, T., Takeda, M. & Wisniewski, H.M.) 447–453 (Wiley and Sons, Chichester, 1997).

    Google Scholar 

  36. Greenberg, S.G. & Davies, P. A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc. Natl. Acad. Sci. U.S.A. 87, 5827–5831 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guela, C., Wu, CK., Saroff, D. et al. Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat Med 4, 827–831 (1998). https://doi.org/10.1038/nm0798-827

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0798-827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing