Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reward processing by the lateral habenula in normal and depressive behaviors

Abstract

The brain reward circuit has a central role in reinforcing behaviors that are rewarding and preventing behaviors that lead to punishment. Recent work has shown that the lateral habenula is an important part of the reward circuit by providing 'negative value' signals to the dopaminergic and serotonergic systems. Studies have also suggested that dysfunction of the lateral habenula is associated with psychiatric disorders, including major depression. Here, we discuss insights gained from neuronal recordings in monkeys regarding how the lateral habenula processes reward-related information. We then highlight recent optogenetic experiments in rodents addressing normal and abnormal functions of the habenula. Finally, we discuss how deregulation of the lateral habenula may be involved in depressive behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibitory effects originating from the LHb create functional heterogeneity among DA neurons.
Figure 2: Both LHb and MHb control the dopaminergic and serotonergic systems.
Figure 3: Potential hyperactive synapses in human depression.
Figure 4: Transgenic Cre-driver mouse lines from GENSAT that permit targeting of different neuronal ensemble in the LHb and MHb.

Similar content being viewed by others

References

  1. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Russo, S.J. & Nestler, E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Cools, R., Nakamura, K. & Daw, N.D. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36, 98–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Stephenson-Jones, M., Floros, O., Robertson, B. & Grillner, S. Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc. Natl. Acad. Sci. USA 109, 164–173 (2012).

    Article  Google Scholar 

  5. Sutherland, R.J. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci. Biobehav. Rev. 6, 1–13 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Wise, R.A. Forebrain substrates of reward and motivation. J. Comp. Neurol. 493, 115–121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hikosaka, O. The habenula: from stress evasion to value-based decision-making. Nat. Rev. Neurosci. 11, 503–513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cools, R., Roberts, A.C. & Robbins, T.W. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn. Sci. 12, 31–40 (2008).

    Article  PubMed  Google Scholar 

  9. Lecourtier, L. & Kelly, P.H. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 31, 658–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Omelchenko, N., Bell, R. & Sesack, S.R. Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur. J. Neurosci. 30, 1239–1250 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Herkenham, M. & Nauta, W.J. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187, 19–47 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Jhou, T.C., Fields, H.L., Baxter, M.G., Saper, C.B. & Holland, P.C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61, 786–800 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaufling, J., Veinante, P., Pawlowski, S.A., Freund-Mercier, M.J. & Barrot, M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J. Comp. Neurol. 513, 597–621 (2009).

    Article  PubMed  Google Scholar 

  14. Moore, R.Y., Halaris, A.E. & Jones, B.E. Serotonin neurons of the midbrain raphe: ascending projections. J. Comp. Neurol. 180, 417–438 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Reisine, T.D. et al. Evidence for a dopaminergic innervation of the cat lateral habenula: its role in controlling serotonin transmission in the basal ganglia. Brain Res. 308, 281–288 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto, M. & Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 12, 77–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wirtshafter, D., Asin, K.E. & Pitzer, M.R. Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula. Brain Res. 633, 21–26 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Wilcox, K.S., Christoph, G.R., Double, B.A. & Leonzio, R.J. Kainate and electrolytic lesions of the lateral habenula: effect on avoidance responses. Physiol. Behav. 36, 413–417 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Dayan, P. & Huys, Q.J. Serotonin, inhibition, and negative mood. PLoS Comput. Biol. 4, e4 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sartorius, A. et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, 9–11 (2010).

    Article  Google Scholar 

  23. Lecca, S., Meye, F.J. & Mameli, M. The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur. J. Neurosci. 39, 1170–1178 (2014).

    Article  PubMed  Google Scholar 

  24. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Hong, S., Jhou, T.C., Smith, M., Saleem, K.S. & Hikosaka, O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 31, 11457–11471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fiorillo, C.D., Tobler, P.N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakamura, K. & Hikosaka, O. Role of dopamine in the primate caudate nucleus in reward modulation of saccades. J. Neurosci. 26, 5360–5369 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).

    Article  PubMed  Google Scholar 

  30. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fanselow, M.S. Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev. 1, 429–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Seymour, B., Singer, T. & Dolan, R. The neurobiology of punishment. Nat. Rev. Neurosci. 8, 300–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Brischoux, F., Chakraborty, S., Brierley, D.I. & Ungless, M.A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA 106, 4894–4899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coizet, V., Dommett, E.J., Redgrave, P. & Overton, P.G. Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience 139, 1479–1493 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Horvitz, J.C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96, 651–656 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Lammel, S., Ion, D.I., Roeper, J. & Malenka, R.C. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70, 855–862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hikosaka, O., Sesack, S.R., Lecourtier, L. & Shepard, P.D. Habenula: crossroad between the basal ganglia and the limbic system. J. Neurosci. 28, 11825–11829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Friedman, A. et al. Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration. Neuropharmacology 60, 381–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Ilango, A., Shumake, J., Wetzel, W., Scheich, H. & Ohl, F.W. Electrical stimulation of lateral habenula during learning: frequency-dependent effects on acquisition but not retrieval of a two-way active avoidance response. PLoS ONE 8, e65684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsumoto, M. & Hikosaka, O. Electrical stimulation of the primate lateral habenula suppresses saccadic eye movement through a learning mechanism. PLoS ONE 6, e26701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stamatakis, A.M. & Stuber, G.D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 15, 1105–1107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong, S. & Hikosaka, O. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience published online, 10.1016/j.neuroscience.2014.07.002 (21 July 2014).

  43. Bromberg-Martin, E.S. & Hikosaka, O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63, 119–126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bromberg-Martin, E.S. & Hikosaka, O. Lateral habenula neurons signal errors in the prediction of reward information. Nat. Neurosci. 14, 1209–1216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stopper, C.M. & Floresco, S.B. What's better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nat. Neurosci. 17, 33–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Lecourtier, L. & Kelly, P.H. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 31, 658–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Herkenham, M. & Nauta, W.J. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J. Comp. Neurol. 173, 123–146 (1977).

    Article  CAS  PubMed  Google Scholar 

  48. Gonçalves, L., Sego, C. & Metzger, M. Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J. Comp. Neurol. 520, 1278–1300 (2012).

    Article  PubMed  Google Scholar 

  49. Kim, U. Topographic commissural and descending projections of the habenula in the rat. J. Comp. Neurol. 513, 173–187 (2009).

    Article  PubMed  Google Scholar 

  50. Reisine, T.D., Soubrie, P., Artaud, F. & Glowinski, J. Involvement of lateral habenula-dorsal raphe neurons in the differential regulation of striatal and nigral serotonergic transmission cats. J. Neurosci. 2, 1062–1071 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kalén, P., Strecker, R.E., Rosengren, E. & Bjorklund, A. Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivo microdialysis: role of excitatory amino acids and GABA. Brain Res. 492, 187–202 (1989).

    Article  PubMed  Google Scholar 

  52. Amat, J. et al. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res. 917, 118–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, L.M., Hu, B., Xia, Y.H., Zhang, B.L. & Zhao, H. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav. Brain Res. 188, 84–90 (2008).

    Article  PubMed  Google Scholar 

  54. Pobbe, R.L. & Zangrossi, H. Jr. The lateral habenula regulates defensive behaviors through changes in 5-HT–mediated neurotransmission in the dorsal periaqueductal gray matter. Neurosci. Lett. 479, 87–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Morris, J.S., Smith, K.A., Cowen, P.J., Friston, K.J. & Dolan, R.J. Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 10, 163–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–5343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bromberg-Martin, E.S., Hikosaka, O. & Nakamura, K. Coding of task reward value in the dorsal raphe nucleus. J. Neurosci. 30, 6262–6272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Geisler, S., Andres, K.H. & Veh, R.W. Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat. J. Comp. Neurol. 458, 78–97 (2003).

    Article  PubMed  Google Scholar 

  59. Aizawa, H., Kobayashi, M., Tanaka, S., Fukai, T. & Okamoto, H. Molecular characterization of the subnuclei in rat habenula. J. Comp. Neurol. 520, 4051–4066 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Parent, A., Gravel, S. & Boucher, R. The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res. Bull. 6, 23–38 (1981).

    Article  CAS  PubMed  Google Scholar 

  61. Parent, M., Levesque, M. & Parent, A. Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J. Comp. Neurol. 439, 162–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Haber, S.N., Lynd-Balta, E. & Mitchell, S.J. The organization of the descending ventral pallidal projections in the monkey. J. Comp. Neurol. 329, 111–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Tripathi, A., Prensa, L. & Mengual, E. Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct. Funct. 218, 1133–1157 (2013).

    Article  PubMed  Google Scholar 

  64. Hong, S. & Hikosaka, O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron 60, 720–729 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tachibana, Y. & Hikosaka, O. The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron 76, 826–837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berridge, K.C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl.) 191, 391–431 (2007).

    Article  CAS  Google Scholar 

  67. Seymour, B., Daw, N.D., Roiser, J.P., Dayan, P. & Dolan, R. Serotonin selectively modulates reward value in human decision-making. J. Neurosci. 32, 5833–5842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Belova, M.A., Paton, J.J. & Salzman, C.D. Moment-to-moment tracking of state value in the amygdala. J. Neurosci. 28, 10023–10030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Shabel, S.J., Proulx, C.D., Trias, A., Murphy, R.T. & Malinow, R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 74, 475–481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stamatakis, A.M. et al. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80, 1039–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. van Zessen, R., Phillips, J.L., Budygin, E.A. & Stuber, G.D. Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184–1194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kazi, J.A., Mori, S., Kuchiiwa, S. & Nakagawa, S. Prolonged expression of c-Fos protein in the lateral habenular nucleus of the Japanese monkey (Macaca fuscata) after eye enucleation. Neurosignals 13, 130–133 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. de Jong, T.R., Measor, K.R., Chauke, M., Harris, B.N. & Saltzman, W. Brief pup exposure induces Fos expression in the lateral habenula and serotonergic caudal dorsal raphe nucleus of paternally experienced male California mice (Peromyscus californicus). Neuroscience 169, 1094–1104 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Shumake, J., Edwards, E. & Gonzalez-Lima, F. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res. 963, 274–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Amat, J. et al. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res. 917, 118–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Li, B. et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mizoguchi, K. et al. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J. Neurosci. 20, 1568–1574 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, K. et al. βCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016–1020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Concha, M.L. & Wilson, S.W. Asymmetry in the epithalamus of vertebrates. J. Anat. 199, 63–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Signore, I.A. et al. Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 991–1003 (2009).

    Article  PubMed  Google Scholar 

  83. Contestabile, A. et al. Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach. Neuroscience 21, 253–270 (1987).

    Article  CAS  PubMed  Google Scholar 

  84. Qin, C. & Luo, M. Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161, 827–837 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Salas, R., Sturm, R., Boulter, J. & De Biasi, M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 29, 3014–3018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fowler, C.D., Lu, Q., Johnson, P.M., Marks, M.J. & Kenny, P.J. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471, 597–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frahm, S. et al. Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron 70, 522–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Ranft, K. et al. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol. Med. 40, 557–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Kobayashi, Y. et al. Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice. Front. Behav. Neurosci. 7, 17 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Agetsuma, M. et al. The habenula is crucial for experience-dependent modification of fear responses in zebrafish. Nat. Neurosci. 13, 1354–1356 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. McCallum, S.E., Cowe, M.A., Lewis, S.W. & Glick, S.D. α3β4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology 63, 434–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hsu, Y.W. et al. Medial habenula output circuit mediated by alpha5 nicotinic receptor–expressing GABAergic neurons in the interpeduncular nucleus. J. Neurosci. 33, 18022–18035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sugama, S. & Conti, B. Interleukin-18 and stress. Brain Res. Rev. 58, 85–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Goutagny, R. et al. Interactions between the lateral habenula and the hippocampus: implication for spatial memory processes. Neuropsychopharmacology 38, 2418–2426 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Aizawa, H. et al. The synchronous activity of lateral habenular neurons is essential for regulating hippocampal theta oscillation. J. Neurosci. 33, 8909–8921 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nair, S.G., Strand, N.S. & Neumaier, J.F. DREADDing the lateral habenula: a review of methodological approaches for studying lateral habenula function. Brain Res. 1511, 93–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Gerfen, C.R., Paletzki, R. & Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.D.P. received support from the Institutions de Recherche en Santé du Canada and a NARSAD Young Investigator Grant from the Brain and Behavior Research Foundation (21367). O.H. received support by the Intramural Research Program at the US National Institutes of Health, National Eye Institute (EY000415-09), and R.M. received support from the US National Institutes of Health (R01MH091119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe D Proulx.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proulx, C., Hikosaka, O. & Malinow, R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 17, 1146–1152 (2014). https://doi.org/10.1038/nn.3779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing