Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The neural bases of momentary lapses in attention

Abstract

Momentary lapses in attention frequently impair goal-directed behavior, sometimes with serious consequences. Nevertheless, we lack an integrated view of the brain mechanisms underlying such lapses. By investigating trial-by-trial relationships between brain activity and response time in humans, we determined that attentional lapses begin with reduced prestimulus activity in anterior cingulate and right prefrontal regions involved in controlling attention. Less efficient stimulus processing during attentional lapses was also characterized by less deactivation of a 'default-mode' network, reduced stimulus-evoked sensory activity, and increased activity in widespread regions of frontal and parietal cortex. Finally, consistent with a mechanism for recovering from attentional lapses, increased stimulus-evoked activity in the right inferior frontal gyrus and the right temporal-parietal junction predicted better performance on the next trial. Our findings provide a new, system-wide understanding of the patterns of brain activity that are associated with brief attentional lapses, which informs both theoretical and clinical models of goal-directed behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental stimuli used in the global and local tasks.
Figure 2: Relatively small amounts of prestimulus activity in frontal control regions predict relatively slow response times.
Figure 3: Smaller deactivations in the default-mode network are associated with longer response times.
Figure 4: Relationships between longer response times and target-related activity in fronto-parietal and sensory cortices.
Figure 5: Greater current-trial activity in the ventral fronto-parietal network predicts faster response time in the next trial.

Similar content being viewed by others

References

  1. Czeisler, C.A. et al. Modafinil for excessive sleepiness associated with shift-work sleep disorder. N. Engl. J. Med. 353, 476–486 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Castellanos, F.X. et al. Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol. Psychiatry 57, 1416–1423 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schacter, D.L. The Seven Sins of Memory: How the Mind Forgets and Remembers (Houghton-Mifflin, New York, 2001).

    Google Scholar 

  4. Beede, K.E. & Kass, S.J. Engrossed in conversation: the impact of cell phones on simulated driving performance. Accid. Anal. Prev. 38, 415–421 (2006).

    Article  PubMed  Google Scholar 

  5. Reimer, B. et al. Behavior differences in drivers with attention deficit hyperactivity disorder: the driving behavior questionnaire. Accid. Anal. Prev. 37, 996–1004 (2005).

    Article  PubMed  Google Scholar 

  6. Desimone, R. Visual attention mediated by biased competition in extrastriate visual cortex. Phil. Trans. R. Soc. Lond. B. 353, 1245–1255 (1998).

    Article  CAS  Google Scholar 

  7. Hopfinger, J.B., Buonocore, M.H. & Mangun, G.R. The neural mechanisms of top-down attentional control. Nat. Neurosci. 3, 284–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L.G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Woldorff, M.G. et al. Functional parcellation of attentional control regions of the brain. J. Cogn. Neurosci. 16, 149–165 (2004).

    Article  PubMed  Google Scholar 

  10. Corbetta, M., Miezin, F.M., Dobmeyer, S., Shulman, G.L. & Petersen, S.E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woldorff, M.G. et al. Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc. Natl. Acad. Sci. USA 90, 8722–8726 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raichle, M.E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carter, C.S. et al. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 97, 1944–1948 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Banich, M.T. et al. fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. J. Cogn. Neurosci. 12, 988–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. MacDonald, A.W., Cohen, J.D., Stenger, V.A. & Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Weissman, D.H., Warner, L.M. & Woldorff, M.G. The neural mechanisms for minimizing cross-modal distraction. J. Neurosci. 24, 10941–10949 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corbetta, M. & Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Kimchi, R. Primacy of wholistic processing and global/local paradigm: a critical review. Psychol. Bull. 112, 24–38 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Navon, D. Forest before trees: the precedence of global features in visual perception. Cognit. Psychol. 9, 353–383 (1977).

    Article  Google Scholar 

  21. Weissman, D.H. & Banich, M.T. Global-local interference modulated by communication between the hemispheres. J. Exp. Psychol. Gen. 128, 283–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Dockree, P.M. et al. Sustained attention in traumatic brain injury (tbi) and healthy controls: enhanced sensitivity with dual-task load. Exp. Brain Res. 168, 218–229 (2006).

    Article  PubMed  Google Scholar 

  23. Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E. & Buckner, R.L. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11, 735–759 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Kerns, J.G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Petrides, M. Functional organization of the human frontal cortex for mnemonic processing. Ann. NY Acad. Sci. 769, 85–96 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Boynton, G.M., Engel, S.A., Glover, G.H. & Heeger, D.J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greicius, M.D., Srivastava, G., Reiss, A.L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA 101, 4637–4642 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McKiernan, K.A., Kaufman, J.N., Kucera-Thompson, J. & Binder, J.R. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J. Cogn. Neurosci. 15, 394–408 (2003).

    Article  PubMed  Google Scholar 

  30. Lavie, N. & de Fockert, J.W. Contrasting effects of sensory limits and capacity limits in visual selective attention. Percept. Psychophys. 65, 202–212 (2003).

    Article  PubMed  Google Scholar 

  31. Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P. & Shulman, G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Indovina, I. & Macaluso, E. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity. Magn. Reson. Imaging 22, 1477–1486 (2004).

    Article  PubMed  Google Scholar 

  33. Rueckert, L. & Grafman, J. Sustained attention deficits in patients with right frontal lesions. Neuropsychologia 34, 953–963 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Wilkins, A.J., Shallice, T. & McCarthy, R. Frontal lesions and sustained attention. Neuropsychologia 25, 359–365 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Drummond, S.P. et al. The neural basis of the psychomotor vigilance task. Sleep 28, 1059–1068 (2005).

    PubMed  Google Scholar 

  36. Lawrence, N.S., Ross, T.J., Hoffman, R., Garavan, H. & Stein, E.A. Multiple neuronal networks mediate spatial attention. J. Cogn. Neurosci. 15, 1028–1038 (2003).

    Article  PubMed  Google Scholar 

  37. Polli, F.E. et al. Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. Proc. Natl. Acad. Sci. USA 102, 15700–15705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fox, M.D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Womelsdorf, T., Fries, P., Mitra, P.P. & Desimone, R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439, 733–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Cabeza, R., Anderson, N.D., Locantore, J.K. & McIntosh, A.R. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17, 1394–1402 (2002).

    Article  PubMed  Google Scholar 

  41. Klingberg, T., O'Sullivan, B.T. & Roland, P.E. Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cereb. Cortex 7, 465–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Weissman, D.H., Gopalakrishnan, A., Hazlett, C.J. & Woldorff, M.G. Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cereb. Cortex 15, 229–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Aron, A.R. & Poldrack, R.A. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1285–1292 (2005).

    Article  PubMed  Google Scholar 

  44. Buckner, R.L. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Montague, P.R., Hyman, S.E. & Cohen, J.D. Computational roles for dopamine in behavioural control. Nature 431, 760–767 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Woldorff, M.G. Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology 30, 98–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Ollinger, J.M., Corbetta, M. & Shulman, G.L. Separating processes within a trial in event-related functional MRI. Neuroimage 13, 218–229 (2001b).

    Article  CAS  PubMed  Google Scholar 

  48. Friston, K.J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  49. Friston, K.J., Price, C.J., Buchel, C. & Frackowiak, R.S.J. A taxonomy of study design. in Human Brain Function (eds. Frackowiak, R.S.J., Friston, K.J., Frith, C.D., Dolan, R.J. & Mazziotta, J.C.) Ch. 8, 141–159 (Academic Press, San Diego, 1997).

    Google Scholar 

  50. Talairach, J. & Tournoux, P. Co-planar Stereotactic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

Download references

Acknowledgements

This research was supported by a postdoctoral National Research Service Award to D.H.W. (1 F32 NS41867-01) and by US National Institute of Health grants to M.G.W. (MH60415 and P01 NS41328, Project 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D H Weissman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissman, D., Roberts, K., Visscher, K. et al. The neural bases of momentary lapses in attention. Nat Neurosci 9, 971–978 (2006). https://doi.org/10.1038/nn1727

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing