Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rett syndrome: a complex disorder with simple roots

Key Points

  • Methyl-CpG-binding protein 2 (MeCP2) functions throughout the brain. Inactivation of MeCP2 in various brain regions and neuronal subtypes has defined the role of MeCP2 in these areas.

  • MeCP2 is a protein that associates with chromatin. The methyl-CpG-binding domain (MBD) is the primary determinant of DNA binding by MeCP2, but other DNA-binding modules are also reported in the molecule.

  • There is evidence that MeCP2 can positively and negatively regulate gene expression at transcriptional and post-transcriptional levels.

  • Mutations in patients with Rett syndrome (RTT) highlight critical regions of MeCP2 (the MBD, an AT-hook and the NCOR–SMRT interaction domain (NID) that determine the presence and severity of RTT pathology.

  • Different models of MeCP2 function (chromatin compaction or recruitment of nuclear receptor co-repressor (NCOR)–SMRT (silencing mediator of retinoic acid and thyroid hormone receptor)) might be consistent with the RTT mutation spectrum.

Abstract

Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Two decades of research have fostered the view that MeCP2 is a multifunctional chromatin protein that integrates diverse aspects of neuronal biology. More recently, studies have focused on specific RTT-associated mutations within the protein. This work has yielded molecular insights into the critical functions of MeCP2 that promise to simplify our understanding of RTT pathology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The primary structure of MeCP2 illustrating domains implicated in the pathology of Rett syndrome.
Figure 2: Summary of proposed molecular functions for MeCP2.
Figure 3: Two models of MeCP2 function are consistent with the mutation spectrum of Rett syndrome.

Similar content being viewed by others

References

  1. Rett, A. [On a unusual brain atrophy syndrome in hyperammonemia in childhood]. Wien. Med. Wochenschr. 116, 723–726 (in German) (1966).

    CAS  PubMed  Google Scholar 

  2. Hagberg, B., Aicardi, J., Dias, K. & Ramos, O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann. Neurol. 14, 471–479 (1983).

    CAS  PubMed  Google Scholar 

  3. Neul, J. L. et al. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68, 944–950 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Percy, A. K. et al. Rett syndrome diagnostic criteria: lessons from the Natural History Study. Ann. Neurol. 68, 951–955 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Armstrong, D., Dunn, J. K., Antalffy, B. & Trivedi, R. Selective dendritic alterations in the cortex of Rett syndrome. J. Neuropathol. Exp. Neurol. 54, 195–201 (1995).

    CAS  PubMed  Google Scholar 

  6. Trappe, R. et al. MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am. J. Hum. Genet. 68, 1093–1101 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Villard, L. MECP2 mutations in males. J. Med. Genet. 44, 417–423 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Topçu, M. et al. Somatic mosaicism for a MECP2 mutation associated with classic Rett syndrome in a boy. Eur. J. Hum. Genet. 10, 77–81 (2002).

    PubMed  Google Scholar 

  9. Schwartzman, J. S., Bernardino, A., Nishimura, A., Gomes, R. R. & Zatz, M. Rett syndrome in a boy with a 47,XXY karyotype confirmed by a rare mutation in the MECP2 gene. Neuropediatrics 32, 162–164 (2001).

    CAS  PubMed  Google Scholar 

  10. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999). This study established that Rett syndrome is caused by mutations in the MECP2 gene.

    CAS  PubMed  Google Scholar 

  11. Kriaucionis, S. & Bird, A. The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res. 32, 1818–1823 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mnatzakanian, G. N. et al. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nature Genet. 36, 339–341 (2004).

    CAS  PubMed  Google Scholar 

  13. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genet. 27, 322–326 (2001).

    CAS  PubMed  Google Scholar 

  14. Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genet. 27, 327–331 (2001). References 13 and 14 describe the deletion of Mecp2 in mice, which results in neurological deficits and establishes an important model system for the study of RTT.

    CAS  PubMed  Google Scholar 

  15. Marchetto, M. C. N. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Y. et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13, 446–458 (2013). This study uses TALENs to inactivate MECP2 in human iPSC-derived neurons, showing a global decrease in RNA levels across many transcripts in these cells.

    PubMed  PubMed Central  Google Scholar 

  17. Yazdani, M. et al. Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cells 30, 2128–2139 (2012).

    CAS  PubMed  Google Scholar 

  18. Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nature Neurosci. 16, 898–902 (2013). This paper identifies the NCOR–SMRT interaction domain in MeCP2 and shows that all of the missense RTT-causing mutations in this region abolish this interaction.

    CAS  PubMed  Google Scholar 

  19. Heckman, L. D., Chahrour, M. H. & Zoghbi, H. Y. Rett-causing mutations reveal two domains critical for MeCP2 function and for toxicity in MECP2 duplication syndrome mice. eLife 3, e02676 (2014). This study identifies a basic cluster in MeCP2 that binds to DNA, and shows that this interaction is impaired by the RTT-causing R306C mutation.

    PubMed Central  Google Scholar 

  20. Baker, S. A. et al. An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152, 984–996 (2013). This paper establishes a severity difference between two different MeCP2 truncation mutations (R270X and G273X) and identifies the affected region of the protein as an AT-hook.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Luikenhuis, S., Giacometti, E., Beard, C. F. & Jaenisch, R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl Acad. Sci. USA 101, 6033–6038 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Akbarian, S. et al. Expression pattern of the Rett syndrome gene MeCP2 in primate prefrontal cortex. Neurobiol. Dis. 8, 784–791 (2001).

    CAS  PubMed  Google Scholar 

  23. Shahbazian, M. D., Antalffy, B., Armstrong, D. L. & Zoghbi, H. Y. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum. Mol. Genet. 11, 115–124 (2002).

    CAS  PubMed  Google Scholar 

  24. Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010). This paper shows that the abundance of MeCP2 approaches that of the nucleosome in mature neurons. MeCP2 binds globally across the genome in the brain with a profile that tracks the density of DNA methylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mullaney, B. C., Johnston, M. V. & Blue, M. E. Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 123, 939–949 (2004).

    CAS  PubMed  Google Scholar 

  26. Jung, B. P. et al. The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. J. Neurobiol. 55, 86–96 (2003).

    CAS  PubMed  Google Scholar 

  27. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007). This study shows that the neurological deficits observed in MeCP2-mutant mice can be largely reversed by re-expression of the protein after symptoms have developed.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheval, H. et al. Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows. Hum. Mol. Genet. 21, 3806–3814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McGraw, C. M., Samaco, R. C. & Zoghbi, H. Y. Adult neural function requires MeCP2. Science 333, 186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nguyen, M. V. C. et al. MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. J. Neurosci. 32, 10021–10034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lioy, D. T. et al. A role for glia in the progression of Rett's syndrome. Nature 475, 497–500 (2011). This paper reports that the expression of MeCP2 exclusively in glia ameliorates many of the deficits observed in knockout mice, and therefore MeCP2 function should not be viewed as restricted to neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ballas, N., Lioy, D. T., Grunseich, C. & Mandel, G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nature Neurosci. 12, 311–317 (2009).

    CAS  PubMed  Google Scholar 

  33. Nguyen, M. V. C. et al. Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J. Neurosci. 33, 18764–18774 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Derecki, N. C. et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484, 105–109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gemelli, T. et al. Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol. Psychiatry 59, 468–476 (2006).

    CAS  PubMed  Google Scholar 

  36. Chao, H.-T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ben-Shachar, S., Chahrour, M., Thaller, C., Shaw, C. A. & Zoghbi, H. Y. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum. Mol. Genet. 18, 2431–2442 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sugino, K. et al. Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes. J. Neurosci. 34, 12877–12883 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kron, M. et al. Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment. J. Neurosci. 32, 13860–13872 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992). This study biochemically identifies MeCP2 as a factor that can bind to DNA containing methylated CpG dinucleotides in vitro.

    CAS  PubMed  Google Scholar 

  41. Nan, X., Meehan, R. R. & Bird, A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 21, 4886–4892 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nan, X., Tate, P., Li, E. & Bird, A. DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell. Biol. 16, 414–421 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar, A. et al. Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. J. Cell Sci. 121, 1128–1137 (2008).

    CAS  PubMed  Google Scholar 

  44. Schmiedeberg, L., Skene, P., Deaton, A. & Bird, A. A temporal threshold for formaldehyde crosslinking and fixation. PLoS ONE 4, e4636 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Gregory, R. I. et al. DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2af1-rs1. Mol. Cell. Biol. 21, 5426–5436 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature Neurosci. 17, 215–222 (2014). This paper demonstrates that MeCP2 binds to methylated CpH (where H represents A, C or T) in vitro and also in vivo in the brain.

    CAS  PubMed  Google Scholar 

  47. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Ohki, I. et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 105, 487–497 (2001).

    CAS  PubMed  Google Scholar 

  49. Ho, K. L. et al. MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol. Cell 29, 525–531 (2008).

    CAS  PubMed  Google Scholar 

  50. Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012). In this study, the MeCP2 MBD is shown to interact with 5hmC-containing DNA, and binding is specifically abolished by the RTT-causing R133C mutation.

    PubMed  PubMed Central  Google Scholar 

  51. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    CAS  PubMed  Google Scholar 

  52. Frauer, C. et al. Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS ONE 6, e21306 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hashimoto, H. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841–4849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Khrapunov, S. et al. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 53, 3379–3391 (2014).

    CAS  PubMed  Google Scholar 

  55. Valinluck, V. et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32, 4100–4108 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Szulwach, K. E. et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neurosci. 14, 1607–1616 (2011).

    CAS  PubMed  Google Scholar 

  58. Von Kries, J. P., Buhrmester, H. & Strätling, W. H. A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell 64, 123–135 (1991).

    CAS  PubMed  Google Scholar 

  59. Weitzel, J. M., Buhrmester, H. & Strätling, W. H. Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol. Cell. Biol. 17, 5656–5666 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ballestar, E., Yusufzai, T. M. & Wolffe, A. P. Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry 39, 7100–7106 (2000).

    CAS  PubMed  Google Scholar 

  61. Yusufzai, T. M. & Wolffe, A. P. Functional consequences of Rett syndrome mutations on human MeCP2. Nucleic Acids Res. 28, 4172–4179 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Baubec, T., Ivánek, R., Lienert, F. & Schübeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013). This paper shows that removal of DNA methylation affects the DNA-binding profiles of MeCP2 in vivo . Similar effects are observed when RTT-causing mutations are introduced into the MBD of MeCP2.

    CAS  PubMed  Google Scholar 

  63. Free, A. et al. DNA recognition by the methyl-CpG binding domain of MeCP2. J. Biol. Chem. 276, 3353–3360 (2001).

    CAS  PubMed  Google Scholar 

  64. Kudo, S. et al. Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain. J. Med. Genet. 40, 487–493 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Georgel, P. T. et al. Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J. Biol. Chem. 278, 32181–32188 (2003).

    CAS  PubMed  Google Scholar 

  66. Adams, V. H., McBryant, S. J., Wade, P. A., Woodcock, C. L. & Hansen, J. C. Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. J. Biol. Chem. 282, 15057–15064 (2007).

    CAS  PubMed  Google Scholar 

  67. Ghosh, R. P. et al. Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry 49, 4395–4410 (2010).

    CAS  PubMed  Google Scholar 

  68. Nikitina, T. et al. MeCP2–chromatin interactions include the formation of chromatosome-like structures and are altered in mutations causing Rett syndrome. J. Biol. Chem. 282, 28237–28245 (2007).

    CAS  PubMed  Google Scholar 

  69. Thambirajah, A. A. et al. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Res. 40, 2884–2897 (2012).

    CAS  PubMed  Google Scholar 

  70. Goffin, D. et al. Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nature Neurosci. 15, 274–283 (2011).

    PubMed  Google Scholar 

  71. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  72. Nan, X., Campoy, F. J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471–481 (1997).

    CAS  PubMed  Google Scholar 

  73. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    CAS  PubMed  Google Scholar 

  74. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).

    CAS  PubMed  Google Scholar 

  75. Kokura, K. et al. The Ski protein family is required for MeCP2-mediated transcriptional repression. J. Biol. Chem. 276, 34115–34121 (2001).

    CAS  PubMed  Google Scholar 

  76. Stancheva, I., Collins, A. L., Van den Veyver, I. B., Zoghbi, H. & Meehan, R. R. A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. Mol. Cell 12, 425–435 (2003).

    CAS  PubMed  Google Scholar 

  77. Kudo, S. Methyl-CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated. Mol. Cell. Biol. 18, 5492–5499 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Robinson, L. et al. Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. Brain 135, 2699–2710 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. Lang, M. et al. Rescue of behavioral and EEG deficits in male and female Mecp2-deficient mice by delayed Mecp2 gene reactivation. Hum. Mol. Genet. 23, 303–318 (2014).

    CAS  PubMed  Google Scholar 

  81. Tudor, M., Akbarian, S., Chen, R. Z. & Jaenisch, R. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc. Natl Acad. Sci. USA 99, 15536–15541 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008). This expression analysis of brain regions from Mecp2 -null mice and MeCP2-overexpressing mice reveals many genes that are positively and negatively regulated by MeCP2.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    CAS  PubMed  Google Scholar 

  84. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ricciardi, S. et al. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum. Mol. Genet. 20, 1182–1196 (2011).

    CAS  PubMed  Google Scholar 

  87. Shahbazian, M. D. & Zoghbi, H. Y. Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am. J. Hum. Genet. 71, 1259–1272 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shin, J., Ming, G. L. & Song, H. By hook or by crook: multifaceted DNA-binding properties of MeCP2. Cell 152, 940–942 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Brero, A. et al. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J. Cell Biol. 169, 733–743 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Horike, S., Cai, S., Miyano, M., Cheng, J.-F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nature Genet. 37, 31–40 (2005).

    CAS  PubMed  Google Scholar 

  91. Nikitina, T. et al. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol. Cell. Biol. 27, 864–877 (2007).

    CAS  PubMed  Google Scholar 

  92. Ghosh, R. P., Horowitz-Scherer, R. A., Nikitina, T., Shlyakhtenko, L. S. & Woodcock, C. L. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol. Cell. Biol. 30, 4656–4670 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jeffery, L. & Nakielny, S. Components of the DNA methylation system of chromatin control are RNA-binding proteins. J. Biol. Chem. 279, 49479–49487 (2004).

    CAS  PubMed  Google Scholar 

  94. Young, J. I. et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl Acad. Sci. USA 102, 17551–17558 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Maunakea, A. K., Chepelev, I., Cui, K. & Zhao, K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 23, 1256–1269 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheng, T. L. et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev. Cell 28, 547–560 (2014).

    CAS  PubMed  Google Scholar 

  97. Samaco, R. C. et al. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nature Genet. 44, 206–211 (2012).

    CAS  PubMed  Google Scholar 

  98. Chang, Q., Khare, G., Dani, V., Nelson, S. & Jaenisch, R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49, 341–348 (2006).

    CAS  PubMed  Google Scholar 

  99. Kline, D. D., Ogier, M., Kunze, D. L. & Katz, D. M. Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J. Neurosci. 30, 5303–5310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Buchovecky, C. M. et al. A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nature Genet. 45, 1013–1020 (2013).

    CAS  PubMed  Google Scholar 

  101. Jordan, C., Li, H. H., Kwan, H. C. & Francke, U. Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med. Genet. 8, 36 (2007).

    PubMed  PubMed Central  Google Scholar 

  102. Christodoulou, J., Grimm, A., Maher, T. & Bennetts, B. RettBASE: the IRSA MECP2 variation database — a new mutation database in evolution. Hum. Mutat. 21, 466–472 (2003).

    CAS  PubMed  Google Scholar 

  103. Kerr, B. et al. Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur. J. Hum. Genet. 20, 69–76 (2012).

    CAS  PubMed  Google Scholar 

  104. Yasui, D. H. et al. Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Hum. Mol. Genet. 23, 2447–2458 (2014).

    CAS  PubMed  Google Scholar 

  105. Shahbazian, M. D. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243–254 (2002).

    CAS  PubMed  Google Scholar 

  106. Bebbington, A. et al. Updating the profile of C-terminal MECP2 deletions in Rett syndrome. J. Med. Genet. 47, 242–248 (2010).

    CAS  PubMed  Google Scholar 

  107. Cuddapah, V. A. et al. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J. Med. Genet. 51, 152–158 (2014).

    CAS  PubMed  Google Scholar 

  108. Neul, J. L. et al. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70, 1313–1321 (2008).

    CAS  PubMed  Google Scholar 

  109. Cheadle, J. P. et al. Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. Hum. Mol. Genet. 9, 1119–1129 (2000).

    CAS  PubMed  Google Scholar 

  110. Obata, K. et al. Mutation analysis of the methyl-CpG binding protein 2 gene (MECP2) in patients with Rett syndrome. J. Med. Genet. 37, 608–610 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nan, X. et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc. Natl Acad. Sci. USA 104, 2709–2714 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Agarwal, N. et al. MeCP2 Rett mutations affect large scale chromatin organization. Hum. Mol. Genet. 20, 4187–4195 (2011).

    CAS  PubMed  Google Scholar 

  113. Kriaucionis, S. et al. Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Mol. Cell. Biol. 26, 5033–5042 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chao, H.-T., Zoghbi, H. Y. & Rosenmund, C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron 56, 58–65 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Meins, M. et al. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J. Med. Genet. 42, e12 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Esch, H. et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77, 442–453 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Collins, A. L. et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13, 2679–2689 (2004).

    CAS  PubMed  Google Scholar 

  118. Kerr, B., Alvarez-Saavedra, M., Sáez, M. A., Saona, A. & Young, J. I. Defective body-weight regulation, motor control and abnormal social interactions in Mecp2 hypomorphic mice. Hum. Mol. Genet. 17, 1707–1717 (2008).

    CAS  PubMed  Google Scholar 

  119. Samaco, R. C. et al. A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum. Mol. Genet. 17, 1718–1727 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Han, K. et al. Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes Dev. 27, 485–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Klein, M. E. et al. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neurosci. 10, 1513–1514 (2007).

    CAS  PubMed  Google Scholar 

  122. Ebert, D. H. & Greenberg, M. E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327–337 (2013). This study shows that MeCP2 is phosphorylated on Thr308 in response to neuronal activity, and this modification abolishes its interaction with NCOR–SMRT.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

    CAS  PubMed  Google Scholar 

  124. Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893 (2003).

    CAS  PubMed  Google Scholar 

  125. Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52, 255–269 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tao, J. et al. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc. Natl Acad. Sci. USA 106, 4882–4887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ebert, D. H. et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature 499, 341–345 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cohen, S. et al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72, 72–85 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, H., Zhong, X., Chau, K. F., Williams, E. C. & Chang, Q. Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nature Neurosci. 14, 1001–1008 (2011).

    CAS  PubMed  Google Scholar 

  130. Fyffe, S. L. et al. Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59, 947–958 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, X., Lacza, Z., Sun, Y. E. & Han, W. Leptin resistance and obesity in mice with deletion of methyl-CpG-binding protein 2 (MeCP2) in hypothalamic pro-opiomelanocortin (POMC) neurons. Diabetologia 57, 236–245 (2014).

    CAS  PubMed  Google Scholar 

  132. Samaco, R. C. et al. Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc. Natl Acad. Sci. USA 106, 21966–21971 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Goffin, D., Brodkin, E. S., Blendy, J. A., Siegel, S. J. & Zhou, Z. Cellular origins of auditory event-related potential deficits in Rett syndrome. Nature Neurosci. 17, 804–806 (2014).

    CAS  PubMed  Google Scholar 

  134. Zhang, W., Peterson, M., Beyer, B., Frankel, W. N. & Zhang, Z. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J. Neurosci. 34, 2754–2763 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ward, C. S. et al. MeCP2 is critical within HoxB1-derived tissues of mice for normal lifespan. J. Neurosci. 31, 10359–10370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Adachi, M., Autry, A. E., Covington, H. E. & Monteggia, L. M. MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. J. Neurosci. 29, 4218–4227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kernohan, K. D. et al. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev. Cell 18, 191–202 (2010).

    CAS  PubMed  Google Scholar 

  138. Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41, D816–D823 (2013).

    CAS  PubMed  Google Scholar 

  139. McFarland, K. N. et al. MeCP2: a novel Huntingtin interactor. Hum. Mol. Genet. 23, 1036–1044 (2014).

    CAS  PubMed  Google Scholar 

  140. Subbanna, S. et al. Ethanol-induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience 258, 422–432 (2014).

    CAS  PubMed  Google Scholar 

  141. Long, S. W., Ooi, J. Y. Y., Yau, P. M. & Jones, P. L. A brain-derived MeCP2 complex supports a role for MeCP2 in RNA processing. Biosci. Rep. 31, 333–343 (2011).

    CAS  PubMed  Google Scholar 

  142. Khoshnan, A. & Patterson, P. H. Elevated IKKα accelerates the differentiation of human neuronal progenitor cells and induces MeCP2-dependent BDNF expression. PLoS ONE 7, e41794 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Becker, A. et al. Direct homo- and hetero-interactions of MeCP2 and MBD2. PLoS ONE 8, e53730 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sephton, C. F. et al. Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J. Biol. Chem. 286, 1204–1215 (2011).

    CAS  PubMed  Google Scholar 

  145. Cartron, P.-F. et al. Identification of TET1 partners that control its DNA-demethylating function. Genes Cancer 4, 235–241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Leoh, L. S. et al. The stress oncoprotein LEDGF/p75 interacts with the methyl CpG binding protein MeCP2 and influences its transcriptional activity. Mol. Cancer Res. 10, 378–391 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Xue, J., Wijeratne, S. S. K. & Zempleni, J. Holocarboxylase synthetase synergizes with methyl CpG binding protein 2 and DNA methyltransferase 1 in the transcriptional repression of long-terminal repeats. Epigenetics 8, 504–511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Murphy, D. M. et al. Co-localization of the oncogenic transcription factor MYCN and the DNA methyl binding protein MeCP2 at genomic sites in neuroblastoma. PLoS ONE 6, e21436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gabel, H. W. et al. Disruption of DNA methylation-dependent long gene repression in Rett syndrome. Nature (in the press). This paper shows that MeCP2 is recruited by methylated CpA dinucleotides and that this binding leads to transcriptional repression of long genes.

Download references

Acknowledgements

The authors thank R. Tillotson for critical reading of the manuscript and W. Borek for help with the figures. They are grateful to all members of A.B.'s laboratory for discussions. Work in the laboratory of A.B. is funded by The Wellcome Trust (grants 091580 and 092076) and the Rett Syndrome Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Bird.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ExAC

RettBASE

PowerPoint slides

Glossary

AT-hook

A DNA-binding motif first identified in the high-mobility group (HMG) chromatin proteins. It specifically recognizes the minor groove of AT-rich DNA.

SIM1-expressing neurons

Neurons expressing the transcription factor SIM1 (single-minded homologue 1) found in tissues such as the hypothalamus, which is involved in regulating body weight homeostasis.

GABA-releasing neurons

Neurons that produce γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain.

CpG dinucleotides

Cytosine bases connected to adjacent guanine bases in the same strand of DNA. This sequence is symmetrical and is therefore base-paired with CpG on the complementary DNA strand.

Imprinted genes

Genes that are expressed in a parent-of-origin-specific manner. They frequently show DNA methylation specific to the parent of origin.

Matrix attachment regions

AT-rich DNA elements defined by their ability to interact with the nuclear matrix in vitro. They are thought to organize chromatin into a series of loops or domains.

Chromocentres

Aggregations of heterochromatin in mouse nuclei that stain readily with DAPI (4′,6-diamidino-2-phenylindole). These regions are enriched in major satellite repeat elements.

Nucleosomal arrays

Arrays that can be assembled in vitro by reconstituting recombinant histones with DNA. They represent a useful tool to study the effect of other proteins on chromatin structure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyst, M., Bird, A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet 16, 261–275 (2015). https://doi.org/10.1038/nrg3897

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing