Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The outs and the ins of sphingosine-1-phosphate in immunity

Key Points

  • The bioactive lipid mediator sphingosine-1-phosphate (S1P) is produced by the sphingosine kinases SPHK1 and SPHK2, and has emerged as a crucial regulator of immunity. Erythrocytes and the lymphatic endothelium are the main contributors to the high levels of S1P in the plasma and lymph, respectively. Trafficking of immune cells relies on S1P receptors (S1PRs) to sense gradients of S1P within and between lymphoid tissues and the circulation. The expression of these receptors is tightly regulated temporally and spatially.

  • Recent studies using pharmacological and genetic approaches combined with intravital staining explain how S1PR1 regulates the egress of newly formed T cells from the thymus and the exit of mature T and B cells from secondary lymphoid organs.

  • Plasma S1P maintains vascular integrity. S1PRs have distinct roles in inflammation-induced vascular permeability. S1P ligation of S1PR1 on endothelial cells induces RAC-dependent adherens junction assembly to enhance barrier integrity, whereas S1PR2 and S1PR3 promote vascular permeability through activation of a RHO-dependent pathway.

  • Many environmental cues, including cytokines and growth factors, stimulate SPHK1 to produce S1P, which is then exported out of cells by specific transporters to activate S1P receptors on the same cell or neighbouring cells. This process, called S1P inside-out signalling, regulates many processes that are important for immunity and inflammation.

  • It has long been suspected that S1P has direct intracellular actions independent of its receptors. Recent studies have uncovered intriguing intracellular targets relevant to immunology, including TNF receptor-associated factor 2 (TRAF2), protein kinase Cδ (PKCδ) and histone deacetylases (HDACs).

  • S1P binds to TRAF2, a key component in the nuclear factor-κB (NF-κB) signalling pathway that is triggered by tumour necrosis factor (TNF), and stimulates its E3 ubiquitin ligase activity. This suggests a novel paradigm for the regulation of K63-linked polyubiquitylation and provides a mechanistic explanation for the numerous observations of the importance of SPHK1 in inflammatory, anti-apoptotic and immune processes.

  • Sepsis is an overwhelming multi-organ immune response to bacterial infections. Toll-like receptor 4 (TLR4) is a sensor of lipopolysaccharide (LPS), a component of bacterial cell walls. Signalling from TLR4 leads to the activation of SPHK1 and the production of S1P, which has important roles in sepsis-induced inflammatory responses. The SPHK1–S1P–S1PR3 axis downstream of protease-activated receptor 1 (PAR1) signalling in dendritic cells regulates late-phase amplification of inflammation during sepsis. In macrophages, S1P produced by SPHK1 stimulates PKCδ, leading to the activation of the IκB kinase (IKK) complex and NF-κB in response to LPS and bacterial lipoprotein.

  • Histone deacetylases (HDACs) remove acetyl groups from the N-terminal tails of histones, and this represses gene transcription. S1P produced in the nucleus by SPHK2, which is present together with HDACs in repressor complexes, binds to and inhibits HDACs, allowing transcription of specific genes to occur.

  • Preclinical and clinical studies suggest that diverse pharmacological agents that target the functions of S1P and its receptors have therapeutic potential for treating a wide range of inflammatory and autoimmune disorders. The sphingosine analogue FTY720 (fingolomod) is the first orally effective therapeutic for the treatment of multiple sclerosis.

Abstract

The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1–5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified scheme of S1P synthesis and metabolism and inside-out signalling.
Figure 2: Regulation of T cell egress by S1PR1.
Figure 3: FHL2-mediated repression of S1pr1 expression and regulation of DC migration.
Figure 4: The dual role of PAR1 and inside-out signalling by S1P in the regulation of endothelial barrier function.
Figure 5: Roles of S1P produced by SPHK1 in TNFR signalling.
Figure 6: Roles of S1P produced by SPHK1 in TLR4 signalling.
Figure 7: S1P produced by SPHK2 in the nucleus inhibits HDACs and regulates gene transcription.

Similar content being viewed by others

References

  1. Zhang, H. et al. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J. Cell Biol. 114, 155–167 (1991).

    CAS  PubMed  Google Scholar 

  2. Olivera, A. & Spiegel, S. Sphingosine-1-phosphate as a second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557–560 (1993). This study provided the first demonstration that S1P is formed and signals in response to external stimuli.

    CAS  PubMed  Google Scholar 

  3. Spiegel, S. & Milstien, S. Functions of the multifaceted family of sphingosine kinases and some close relatives. J. Biol. Chem. 282, 2125–2129 (2007).

    CAS  PubMed  Google Scholar 

  4. Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Rev. Mol. Cell Biol. 4, 397–407 (2003).

    CAS  Google Scholar 

  5. Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    CAS  PubMed  Google Scholar 

  6. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007). This was the first demonstration that erythrocytes are the major source of plasma S1P.

    CAS  PubMed  Google Scholar 

  7. Pham, T. H. et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207, 17–27 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwab, S. R. & Cyster, J. G. Finding a way out: lymphocyte egress from lymphoid organs. Nature Immunol. 8, 1295–1301 (2007).

    CAS  Google Scholar 

  9. Rivera, J., Proia, R. L. & Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nature Rev. Immunol. 8, 753–763 (2008).

    CAS  Google Scholar 

  10. Pereira, J. P., Kelly, L. M. & Cyster, J. G. Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. Int. Immunol. 22, 413–419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chi, H. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol. Sci. 32, 16–24 (2011).

    CAS  PubMed  Google Scholar 

  12. Wang, F. et al. Sphingosine 1-phosphate stimulates cell migration through a Gi- coupled cell surface receptor. Potential involvement in angiogenesis. J. Biol. Chem. 274, 35343–35350 (1999).

    CAS  PubMed  Google Scholar 

  13. Zachariah, M. A. & Cyster, J. G. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328, 1129–1135 (2010). This study identified the major thymic egress route and implicated pericytes in reverse transmigration of mature thymocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cinamon, G., Zachariah, M. A., Lam, O. M., Foss, F. W. Jr & Cyster, J. G. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nature Immunol. 9, 54–62 (2008).

    CAS  Google Scholar 

  15. Jenne, C. N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206, 2469–2481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rathinasamy, A., Czeloth, N., Pabst, O., Forster, R. & Bernhardt, G. The origin and maturity of dendritic cells determine the pattern of sphingosine 1-phosphate receptors expressed and required for efficient migration. J. Immunol. 185, 4072–4081 (2010).

    CAS  PubMed  Google Scholar 

  17. Konig, K. et al. Four-and-a-half LIM domain protein 2 is a novel regulator of sphingosine 1-phosphate receptor 1 in CCL19-induced dendritic cell migration. J. Immunol. 185, 1466–1475 (2010).

    PubMed  Google Scholar 

  18. Jolly, P. S. et al. Transactivation of sphingosine-1-phosphate receptors by FcɛRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 199, 959–970 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishii, M. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Grigorova, I. L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nature Immunol. 10, 58–65 (2009).

    CAS  Google Scholar 

  21. Allende, M. L. et al. S1P1 receptor directs the release of immature B cells from bone marrow into blood. J. Exp. Med. 207, 1113–1124 (2010). This study demonstrated that S1PR1 is required for transfer of newly generated immature B cells from the bone marrow to the blood.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sinha, R. K., Park, C., Hwang, I. Y., Davis, M. D. & Kehrl, J. H. B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30, 434–446 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Takada, K. et al. Kruppel-like factor 2 is required for trafficking but not quiescence in postactivated T cells. J. Immunol. 186, 775–783 (2011).

    CAS  PubMed  Google Scholar 

  24. Sensken, S. C. et al. Redistribution of sphingosine 1-phosphate by sphingosine kinase 2 contributes to lymphopenia. J. Immunol. 184, 4133–4142 (2010).

    CAS  PubMed  Google Scholar 

  25. Gossens, K. et al. Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. J. Exp. Med. 206, 761–778 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Thangada, S. et al. Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. J. Exp. Med. 207, 1475–1483 (2010). This study established that S1PR1 surface residency on T cells is the primary determinant of lymphocyte egress kinetics in vivo .

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pham, T. H., Okada, T., Matloubian, M., Lo, C. G. & Cyster, J. G. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28, 122–133 (2008).

    CAS  PubMed  Google Scholar 

  28. Grigorova, I. L., Panteleev, M. & Cyster, J. G. Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc. Natl Acad. Sci. USA 107, 20447–20452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bankovich, A. J., Shiow, L. R. & Cyster, J. G. CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem. 285, 22328–22337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maeda, Y., Seki, N., Sato, N., Sugahara, K. & Chiba, K. Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow. Int. Immunol. 22, 515–525 (2010).

    CAS  Google Scholar 

  31. Cyster, J. G. B cell follicles and antigen encounters of the third kind. Nature Immunol. 11, 989–996 (2010).

    CAS  Google Scholar 

  32. Hoek, K. L. et al. Follicular B cell trafficking within the spleen actively restricts humoral immune responses. Immunity 33, 254–265 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hart, G. T., Wang, X., Hogquist, K. A. & Jameson, S. C. Kruppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression. Proc. Natl Acad. Sci. USA 108, 716–721 (2011).

    CAS  PubMed  Google Scholar 

  34. Winkelmann, R. et al. B cell homeostasis and plasma cell homing controlled by Kruppel-like factor 2. Proc. Natl Acad. Sci. USA 108, 710–715 (2011). References 33 and 34 provided evidence that KLF2 is not required to maintain surface expression of S1PR1 on B cells.

    CAS  PubMed  Google Scholar 

  35. Pereira, J. P., Cyster, J. G. & Xu, Y. A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLoS ONE 5, e9277 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Donovan, E. E., Pelanda, R. & Torres, R. M. S1P3 confers differential S1P-induced migration by autoreactive and non-autoreactive immature B cells and is required for normal B-cell development. Eur. J. Immunol. 40, 688–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Faroudi, M. et al. Critical roles for Rac GTPases in T-cell migration to and within lymph nodes. Blood 116, 5536–5547 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakata, D. et al. Impaired T lymphocyte trafficking in mice deficient in an actin-nucleating protein, mDia1. J. Exp. Med. 204, 2031–2038 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000). This was the first study on S1P receptor knockout mice and revealed the importance of S1PR1 in blood vessel formation and vascular maturation.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, F. et al. Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J. Clin. Invest. 120, 3979–3995 (2010). This study demonstrated an important role for S1PR2 in atherogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunol. 8, 1337–1344 (2007).

    CAS  Google Scholar 

  42. Vogel, P. et al. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS ONE 4, e4112 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Allende, M. L. et al. Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J. Biol. Chem. 286, 7348–7358 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Garcia, J. G. et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J. Clin. Invest. 108, 689–701 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudek, S. M. et al. Abl tyrosine kinase phosphorylates nonmuscle myosin light chain kinase to regulate endothelial barrier function. Mol. Biol. Cell 21, 4042–4056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Camerer, E. et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J. Clin. Invest. 119, 1871–1879 (2009). This elegant study demonstrated that plasma S1P maintains vascular integrity by activating S1PR1 on endothelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marsolais, D. & Rosen, H. Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules. Nature Rev. Drug Discov. 8, 297–307 (2009).

    CAS  Google Scholar 

  48. Sanchez, T. et al. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler. Thromb. Vasc. Biol. 27, 1312–1318 (2007).

    CAS  PubMed  Google Scholar 

  49. Niessen, F. et al. Dendritic cell PAR1–S1P3 signalling couples coagulation and inflammation. Nature 452, 654–658 (2008). This study showed for the first time that the SPHK1–S1P–S1PR3 axis is a downstream component of PAR1 signalling in dendritic cells that regulates late phase amplification of inflammation during sepsis.

    CAS  PubMed  Google Scholar 

  50. Olivera, A. et al. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J. Biol. Chem. 281, 2515–2525 (2006).

    CAS  PubMed  Google Scholar 

  51. Olivera, A. et al. The sphingosine kinase–sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26, 287–297 (2007).

    CAS  PubMed  Google Scholar 

  52. Oskeritzian, C. A. et al. Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood 111, 4193–4200 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mitra, P. et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc. Natl Acad. Sci. USA 103, 16394–16399 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Osborne, N. et al. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr. Biol. 18, 1882–1888 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawahara, A. et al. The sphingolipid transporter Spns2 functions in migration of zebrafish myocardial precursors. Science 323, 524–527 (2009).

    CAS  PubMed  Google Scholar 

  56. Nishiuma, T. et al. Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L1085–L1093 (2008).

    CAS  PubMed  Google Scholar 

  57. Price, M. M. et al. Sphingosine-1-phosphate induces development of functionally mature chymase-expressing human mast cells from hematopoietic progenitors. FASEB J. 23, 3506–3515 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Oskeritzian, C. A. et al. Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema. J. Exp. Med. 207, 465–474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun, X. et al. Functional variants of the sphingosine-1-phosphate receptor 1 gene associate with asthma susceptibility. J. Allergy Clin. Immunol. 126, 241–249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Olivera, A. et al. Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. J. Clin. Invest. 120, 1429–1240 (2010). This study showed that S1P produced by SPHK1 regulates blood pressure, histamine clearance and recovery from anaphylaxis in a S1PR2-dependent manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Niessen, F. et al. Endogenous EPCR/aPC-PAR1 signaling prevents inflammation-induced vascular leakage and lethality. Blood 113, 2859–2866 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tauseef, M. et al. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ. Res. 103, 1164–1172 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sammani, S. et al. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am. J. Respir. Cell. Mol. Biol. 43, 394–402 (2010).

    CAS  PubMed  Google Scholar 

  64. Xia, P. et al. Tumor necrosis factor-α induces adhesion molecule expression through the sphingosine kinase pathway. Proc. Natl Acad. Sci. USA 95, 14196–14201 (1998). This was the first paper to demonstrate a role for SPHK1 in signal transduction by TRAF2 that is important for the activation of NF-κB and for preventing apoptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Snider, A. J. et al. A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. FASEB J. 23, 143–152 (2008).

    PubMed  Google Scholar 

  66. Lai, W. Q. et al. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J. Immunol. 183, 2097–2103 (2009).

    CAS  PubMed  Google Scholar 

  67. Baker, D. A., Barth, J., Chang, R., Obeid, L. M. & Gilkeson, G. S. Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-α-induced arthritis. J. Immunol. 185, 2570–2579 (2010). This study demonstrated that SPHK1 plays a key role in TNF-induced inflammatory arthritis in mice.

    CAS  PubMed  Google Scholar 

  68. Pitson, S. M. et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491–5500 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Takabe, K., Paugh, S. W., Milstien, S. & Spiegel, S. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol. Rev. 60, 181–195 (2008).

    CAS  PubMed  Google Scholar 

  70. De Palma, C., Meacci, E., Perrotta, C., Bruni, P. & Clementi, E. Endothelial nitric oxide synthase activation by tumor necrosis factor α through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler. Thromb. Vasc. Biol. 26, 99–105 (2006).

    CAS  PubMed  Google Scholar 

  71. Scherer, E. Q. et al. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke 41, 2618–2624 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vann, L. R. et al. Involvement of sphingosine kinase in TNF-α-stimulated tetrahydrobiopterin biosynthesis in C6 glioma cells. J. Biol. Chem. 277, 12649–12656 (2002).

    CAS  PubMed  Google Scholar 

  73. Xia, P. et al. Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-α signaling. J. Biol. Chem. 277, 7996–8003 (2002).

    CAS  PubMed  Google Scholar 

  74. Siehler, S., Wang, Y., Fan, X., Windh, R. T. & Manning, D. R. Sphingosine 1-phosphate activates nuclear factor-κB through Edg receptors. Activation through Edg-3 and Edg-5, but not Edg-1, in human embryonic kidney 293 cells. J. Biol. Chem. 276, 48733–48739 (2001).

    CAS  PubMed  Google Scholar 

  75. Alvarez, S. E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010). This study identified S1P as an essential cofactor for the E3 ligase activity of TRAF2.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhoj, V. G. & Chen, Z. J. Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437 (2009).

    CAS  PubMed  Google Scholar 

  77. Lee, T. H., Shank, J., Cusson, N. & Kelliher, M. A. The kinase activity of Rip1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185–33191 (2004).

    CAS  PubMed  Google Scholar 

  78. Li, S., Wang, L. & Dorf, M. E. PKC phosphorylation of TRAF2 mediates IKKα/β recruitment and K63-linked polyubiquitination. Mol. Cell 33, 30–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  PubMed  Google Scholar 

  81. Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation [corrected]. Nature Cell Biol. 8, 398–406 (2006).

    CAS  PubMed  Google Scholar 

  82. Devin, A., Lin, Y. & Liu, Z. G. The role of the death-domain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep. 4, 623–627 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Paugh, B. S. et al. EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCδ, and sphingosine kinase 1 in glioblastoma cells. FASEB J. 22, 455–465 (2008).

    CAS  PubMed  Google Scholar 

  84. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    CAS  PubMed  Google Scholar 

  85. Wu, W., Mosteller, R. D. & Broek, D. Sphingosine kinase protects lipopolysaccharide-activated macrophages from apoptosis. Mol. Cell. Biol. 24, 7359–7369 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Puneet, P. et al. SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis. Science 328, 1290–1294 (2010). This study identified PKCδ as an intracellular target of S1P and demonstrated a crucial role for SPHK1 in sepsis.

    CAS  PubMed  Google Scholar 

  87. Keul, P. et al. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ. Res. 108, 314–323 (2011).

    CAS  PubMed  Google Scholar 

  88. Skoura, A. et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 81–85 (2011).

    CAS  PubMed  Google Scholar 

  89. Hughes, J. E. et al. Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ. Res. 102, 950–958 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Eskan, M. A. et al. TLR4 and S1P receptors cooperate to enhance inflammatory cytokine production in human gingival epithelial cells. Eur. J. Immunol. 38, 1138–1147 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    CAS  PubMed  Google Scholar 

  92. Nayak, D. et al. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166, 132–144 (2010).

    CAS  PubMed  Google Scholar 

  93. Di, A. et al. A novel function of sphingosine kinase 1 suppression of JNK activity in preventing inflammation and injury. J. Biol. Chem. 285, 15848–15857 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Samy, E. T. et al. Cutting edge: modulation of intestinal autoimmunity and IL-2 signaling by sphingosine kinase 2 independent of sphingosine 1-phosphate. J. Immunol. 179, 5644–5648 (2007).

    CAS  PubMed  Google Scholar 

  95. Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009). This study demonstrated that S1P binds to and inhibits HDAC1 and HDAC2.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature Rev. Genet. 10, 32–42 (2009).

    CAS  PubMed  Google Scholar 

  97. Glauben, R., Sonnenberg, E., Zeitz, M. & Siegmund, B. HDAC inhibitors in models of inflammation-related tumorigenesis. Cancer Lett. 280, 154–159 (2009).

    CAS  PubMed  Google Scholar 

  98. Wang, L., de Zoeten, E. F., Greene, M. I. & Hancock, W. W. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nature Rev. Drug Discov. 8, 969–981 (2009).

    CAS  Google Scholar 

  99. Igarashi, N. et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 278, 46832–46839 (2003).

    CAS  PubMed  Google Scholar 

  100. Sankala, H. M. et al. Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res. 67, 10466–10474 (2007).

    CAS  PubMed  Google Scholar 

  101. Hait, N. C., Bellamy, A., Milstien, S., Kordula, T. & Spiegel, S. Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J. Biol. Chem. 282, 12058–12065 (2007).

    CAS  PubMed  Google Scholar 

  102. Ding, G. et al. Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J. Biol. Chem. 282, 27493–27502 (2007).

    CAS  PubMed  Google Scholar 

  103. Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nature Rev. Drug Discov. 9, 883–897 (2010).

    CAS  Google Scholar 

  104. Mullershausen, F. et al. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nature Chem. Biol. 5, 428–434 (2009).

    CAS  Google Scholar 

  105. Mehling, M. et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology 71, 1261–1267 (2008).

    CAS  PubMed  Google Scholar 

  106. Choi, J. W. et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc. Natl Acad. Sci. USA 108, 751–756 (2010).

    PubMed  PubMed Central  Google Scholar 

  107. Kulakowska, A. et al. Intrathecal increase of sphingosine 1-phosphate at early stage multiple sclerosis. Neurosci. Lett. 477, 149–152 (2010).

    CAS  PubMed  Google Scholar 

  108. Bagdanoff, J. T. et al. Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanoneoxime(LX2931) and (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1,2,3,4-tetraol (LX2932). J. Med. Chem. 53, 8650–8662 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (to S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Spiegel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Sarah Spiegel's homepage

Glossary

S1P receptors

A family of five G protein-coupled receptors. The binding of sphingosine-1-phosphate (S1P) to these receptors activates heterotrimeric GTP-binding proteins, leading to the activation of downstream signalling.

Inside-out signalling

The process by which intracellular signalling mechanisms result in the activation of cell surface receptors. By contrast, outside-in signalling is the process by which ligation of a cell surface receptor activates signalling pathways inside the cell.

Transitional B cells

Transitional B cells are short-lived immature B cells that either die or are selected into the peripheral mature B cell repertoire. Transitional B cells can be subdivided into three subsets (T1, T2 and T3 cells) based on differential phenotypical and functional characteristics.

Reverse transmigration

Migration of cells across the endothelial basement membrane and, subsequently, across the endothelial barrier.

Marginal zone bridging channels

Structures in the spleen that are thought to allow the passage of lymphocytes from the red pulp to the white pulp.

Anaphylaxis

A severe whole body allergic reaction that is life threatening.

E3 ubiquitin ligases

Enzymes that attach the molecular tag ubiquitin to proteins. Depending on the number of ubiquitin molecules that are attached and the positioning of the links between them, the ubiquitin tag can target proteins for degradation by the proteasome, sort them to specific subcellular compartments or modify their biological activity.

Sepsis

A potentially serious medical condition that involves a whole-body inflammatory response to an infection.

FTY720

A sphingosine-like drug that is phosphorylated intracellularly by sphingosine kinase. Phosphorylated FTY720 is an agonist of all of the sphingosine-1-phosphate receptors (S1PRs) except S1PR2, but its immunosuppressive functions are due to prolonged downregulation and degradation of S1PR1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiegel, S., Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11, 403–415 (2011). https://doi.org/10.1038/nri2974

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing