Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synaptic mechanisms underlying persistent cocaine craving

Key Points

  • Vulnerability to relapse that persists even after prolonged abstinence is a major problem in treating cocaine addiction. Mechanisms underlying this persistent vulnerability can be studied using rodent models of cue-induced cocaine craving during abstinence from cocaine self-administration.

  • Cue-induced cocaine craving in rodents progressively intensifies (incubates) over the first month of abstinence and remains high for months. Incubation of craving also occurs in human drug users.

  • Incubation of cocaine craving depends on an evolving series of neuroadaptations in the reward circuitry. Early adaptations in the ventral tegmental area and perhaps also the amygdala lead to more persistent changes in the nucleus accumbens, medial prefrontal cortex and central nucleus of the amygdala that increase the reactivity of neurons in these regions to cocaine cues and are ultimately required for the expression of incubated craving.

  • Increased reactivity of these regions of the rodent brain to cocaine cues presented during abstinence is important because neuroimaging studies in human cocaine users have found that heightened cue reactivity in related brain regions is associated with addiction severity and risk of relapse.

  • The relationship between cocaine craving and synaptic transmission has been most thoroughly studied in the nucleus accumbens, where abstinence is associated with changes in AMPA receptor subunit composition and silent synapse-based remodelling. Strengthening of excitatory synapses on nucleus accumbens neurons is particularly important for the maintenance of incubated craving after prolonged abstinence.

  • Dopamine transmission is altered during abstinence owing to plasticity within the ventral tegmental area and changes in dopamine receptor expression in dopaminergic projection areas, but many questions remain about the role of dopamine transmission in modulating synaptic plasticity and behaviour during abstinence.

  • Potential therapeutic strategies to prolong abstinence, identified through rodent studies, include the use of agonists of metabotropic glutamate receptor 2 (mGluR2) and/or mGluR3, mGluR1 positive allosteric modulators, serotonin (5-HT) receptor ligands (including 5-HT1B receptor agonists, 5-HT2C receptor agonists and 5-HT2A receptor antagonists), D3 dopamine receptor antagonists, environmental enrichment and interventions to normalize sleep patterns.

Abstract

Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reward pathways and their roles in incubation of cue-induced cocaine craving.
Figure 2: Ca2+-permeable AMPA receptors in nucleus accumbens core synapses are required for expression of incubated cocaine craving.

Similar content being viewed by others

References

  1. O'Brien, C. P. A range of research-based pharmacotherapies for addiction. Science 278, 66–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011). This article describes dysfunction of the prefrontal cortex in cocaine addicts during different stages of the addiction cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanlon, C. A., Beveridge, T. J. & Porrino, L. J. Recovering from cocaine: insights from clinical and preclinical investigations. Neurosci. Biobehav. Rev. 37, 2037–2046 (2013). This article reviews available evidence on the extent to which behavioural and neuronal consequences of cocaine exposure recover during abstinence in clinical populations, primates and rodents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cruz, F. C. et al. New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat. Rev. Neurosci. 14, 743–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venniro, M., Caprioli, D. & Shaham, Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog. Brain Res. 224, 25–52 (2016). This concise but comprehensive review of animal models provides historical context and an explanation of experimental procedures.

    Article  PubMed  Google Scholar 

  6. Bossert, J. M., Marchant, N. J., Calu, D. J. & Shaham, Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology (Berl.) 229, 453–476 (2013).

    Article  CAS  Google Scholar 

  7. Self, D. W., Choi, K. H., Simmons, D., Walker, J. R. & Smagula, C. S. Extinction training regulates neuroadaptive responses to withdrawal from chronic cocaine self-administration. Learn. Mem. 11, 648–657 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wolf, M. E. & Ferrario, C. R. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci. Biobehav. Rev. 35, 185–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neisewander, J. L. et al. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J. Neurosci. 20, 798–805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grimm, J. W., Hope, B. T., Wise, R. A. & Shaham, Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412, 141–142 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu, L., Grimm, J. W., Hope, B. T. & Shaham, Y. Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47 (Suppl. 1), 214–226 (2004). This review is the foundation for understanding the phenomenon of incubation of cocaine craving.

    Article  CAS  PubMed  Google Scholar 

  12. Pickens, C. L. et al. Neurobiology of the incubation of drug craving. Trends Neurosci. 34, 411–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferland, J.-M. N. & Winstanley, C. A. Risk-preferring rats make worse decisions and show increased incubation of craving after cocaine self-administration. Addict. Biol. http://dx.doi.org/10.1111/adb.12388 (2016).

  14. Gancarz-Kausch, A. M., Adank, D. N. & Dietz, D. M. Prolonged withdrawal following cocaine self-administration increases resistance to punishment in a cocaine binge. Sci. Rep. 4, 6876 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, X., Caprioli, D. & Marchant, N. J. Recent updates on incubation of drug craving: a mini-review. Addict. Biol. 20, 872–876 (2015).

    Article  PubMed  Google Scholar 

  16. Hollander, J. A. & Carelli, R. M. Abstinence from cocaine self-administration heightens neural encoding of goal-directed behaviors in the accumbens. Neuropsychopharmacology 30, 1464–1474 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kerstetter, K. A., Aguilar, V. R., Parrish, A. B. & Kippin, T. E. Protracted time-dependent increases in cocaine-seeking behavior during cocaine withdrawal in female relative to male rats. Psychopharmacology (Berl.) 198, 63–75 (2008).

    Article  CAS  Google Scholar 

  18. Zlebnik, N. E. & Carroll, M. E. Prevention of the incubation of cocaine seeking by aerobic exercise in female rats. Psychopharmacology (Berl.) 232, 3507–3513 (2015).

    Article  CAS  Google Scholar 

  19. Terrier, J., Luscher, C. & Pascoli, V. Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, cue-induced seeking, and incubation of craving. Neuropsychopharmacology http://dx.doi.org/10.1038/npp.2015.345 (2015).

  20. Meredith, G. E., Baldo, B. A., Andrezjewski, M. E. & Kelley, A. E. The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct. Funct. 213, 17–27 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sesack, S. R. & Grace, A. A. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–47 (2010).

    Article  PubMed  Google Scholar 

  22. Mogenson, G. J., Jones, D. L. & Yim, C. Y. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 14, 69–97 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. Kourrich, S., Calu, D. J. & Bonci, A. Intrinsic plasticity: an emerging player in addiction. Nat. Rev. Neurosci. 16, 173–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Hollander, J. A. & Carelli, R. M. Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J. Neurosci. 27, 3535–3539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guillem, K., Ahmed, S. H. & Peoples, L. L. Escalation of cocaine intake and incubation of cocaine seeking are correlated with dissociable neuronal processes in different accumbens subregions. Biol. Psychiatry 76, 31–39 (2014). This paper demonstrates that the NAc core is selectively involved in incubation of drug seeking, whereas the NAc shell is involved in escalation of drug taking.

    Article  CAS  PubMed  Google Scholar 

  26. Kourrich, S. & Thomas, M. J. Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. J. Neurosci. 29, 12275–12283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Conrad, K. L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008). This study was the first to demonstrate that CP-AMPARs accumulate in the NAc during incubation of cocaine craving and that activation of these receptors in the core subregion is required for the expression of incubation after prolonged withdrawal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolf, M. E. & Tseng, K. Y. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Front. Mol. Neurosci. 5, 72 (2012). This is a comprehensive review of the functional and behavioural significance of AMPAR plasticity during abstinence in two crucial regions of the reward circuitry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmidt, H. D. et al. ADAR2-dependent GluA2 editing regulates cocaine seeking. Mol. Psychiatry 20, 1460–1466 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Purgianto, A. et al. Different adaptations in AMPA receptor transmission in the nucleus accumbens after short versus long access cocaine self-administration regimens. Neuropsychopharmacology 38, 1789–1797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Loweth, J. A. et al. Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nat. Neurosci. 17, 73–80 (2014). This study established the importance of mGluR1 in the NAc as a modulator of synaptic plasticity underlying incubation of cocaine craving and as a target for therapeutic intervention.

    Article  CAS  PubMed  Google Scholar 

  32. Lu, L. et al. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat. Neurosci. 8, 212–219 (2005). This paper was important in establishing a necessary role for the central nucleus of the amygdala in the incubation of cocaine craving.

    Article  CAS  PubMed  Google Scholar 

  33. Koya, E. et al. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology 56 (Suppl. 1), 177–185 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Mameli, M., Bellone, C., Brown, M. T. & Luscher, C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat. Neurosci. 14, 414–416 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kullmann, D. M. & Lamsa, K. Roles of distinct glutamate receptors in induction of anti-Hebbian long-term potentiation. J. Physiol. 586, 1481–1486 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferrario, C. R., Goussakov, I., Stutzmann, G. E. & Wolf, M. E. Withdrawal from cocaine self-administration alters NMDA receptor-mediated Ca2+ entry in nucleus accumbens dendritic spines. PLoS ONE 7, e40898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bellone, C. & Luscher, C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur. J. Neurosci. 21, 1280–1288 (2005).

    Article  PubMed  Google Scholar 

  38. Loweth, J. A., Tseng, K. Y. & Wolf, M. E. Using metabotropic glutamate receptors to modulate cocaine's synaptic and behavioral effects: mGluR1 finds a niche. Curr. Opin. Neurobiol. 23, 500–506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCutcheon, J. E. et al. Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism. J. Neurosci. 31, 14536–14541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferrario, C. R. et al. Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the formation of Ca2+-permeable AMPA receptors during the incubation of cocaine craving. Neuropharmacology 61, 1141–1151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci. 24, 6939–6945 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scheyer, A. F., Wolf, M. E. & Tseng, K. Y. A protein synthesis-dependent mechanism sustains calcium-permeable AMPA receptor transmission in nucleus accumbens synapses during withdrawal from cocaine self-administration. J. Neurosci. 34, 3095–3100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhakar, A. L., Dolen, G. & Bear, M. F. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monteggia, L. M. & Zarate, C. Jr. Antidepressant actions of ketamine: from molecular mechanisms to clinical practice. Curr. Opin. Neurobiol. 30, 139–143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martin, M., Chen, B. T., Hopf, F. W., Bowers, M. S. & Bonci, A. Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nat. Neurosci. 9, 868–869 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Knackstedt, L. A. et al. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J. Neurosci. 30, 7984–7992 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grimm, J. W. et al. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci. 23, 742–747 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, X. & Wolf, M. E. Brain-derived neurotrophic factor rapidly increases AMPA receptor surface expression in rat nucleus accumbens. Eur. J. Neurosci. 34, 190–198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, X. et al. Different roles of BDNF in nucleus accumbens core versus shell during the incubation of cue-induced cocaine craving and its long-term maintenance. J. Neurosci. 33, 1130–1142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, X. & Wolf, M. E. Multiple faces of BDNF in cocaine addiction. Behav. Brain Res. 279, 240–254 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. McCutcheon, J. E., Wang, X., Tseng, K. Y., Wolf, M. E. & Marinelli, M. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J. Neurosci. 31, 5737–5743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cameron, C. M. & Carelli, R. M. Cocaine abstinence alters nucleus accumbens firing dynamics during goal-directed behaviors for cocaine and sucrose. Eur. J. Neurosci. 35, 940–951 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee, B. R. et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat. Neurosci. 16, 1644–1651 (2013). This is the first demonstration that silent synapse formation and un-silencing are crucial for the plasticity that underlies incubation of cocaine craving.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ma, Y. Y. et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83, 1453–1467 (2014). This paper shows that silent synapse-based plasticity in the NAc can both promote and oppose incubation of cocaine craving.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pascoli, V. et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509, 459–464 (2014). This study demonstrates differences in cocaine-induced plasticity at synapses between specific glutamate afferents and MSN subpopulations in the NAc shell.

    Article  CAS  PubMed  Google Scholar 

  56. Mameli, M. et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci. 12, 1036–1041 (2009). This study shows that mGluR1-regulated synaptic plasticity in the VTA enables subsequent plasticity in the NAc that is linked to cue-induced cocaine seeking during abstinence.

    Article  CAS  PubMed  Google Scholar 

  57. Dong, Y. & Nestler, E. J. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol. Sci. 35, 374–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bellone, C. & Luscher, C. Drug-evoked plasticity: do addictive drugs reopen a critical period of postnatal synaptic development? Front. Mol. Neurosci. 5, 75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Feltenstein, M. W. & See, R. E. Systems level neuroplasticity in drug addiction. Cold Spring Harb. Perspect. Med. 3, a011916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. O'Donnell, P. & Grace, A. A. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J. Neurosci. 15, 3622–3639 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Finch, D. M. Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus 6, 495–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Brady, A. M., Glick, S. D. & O'Donnell, P. Selective disruption of nucleus accumbens gating mechanisms in rats behaviorally sensitized to methamphetamine. J. Neurosci. 25, 6687–6695 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vanderschuren, L. J., Di Ciano, P. & Everitt, B. J. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J. Neurosci. 25, 8665–8670 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fuchs, R. A., Branham, R. K. & See, R. E. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J. Neurosci. 26, 3584–3588 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. See, R. E., Elliott, J. C. & Feltenstein, M. W. The role of dorsal versus ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats. Psychopharmacology (Berl.) 194, 321–331 (2007).

    Article  CAS  Google Scholar 

  67. Pacchioni, A. M., Gabriele, A. & See, R. E. Dorsal striatum mediation of cocaine-seeking after withdrawal from short or long daily access cocaine self-administration in rats. Behav. Brain Res. 218, 296–300 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Jonkman, S., Pelloux, Y. & Everitt, B. J. Differential roles of the dorsolateral and midlateral striatum in punished cocaine seeking. J. Neurosci. 32, 4645–4650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bossert, J. M., Ghitza, U. E., Lu, L., Epstein, D. H. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. Eur. J. Pharmacol. 526, 36–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Knackstedt, L. A., Trantham-Davidson, H. L. & Schwendt, M. The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning. Addict. Biol. 19, 87–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Li, X. et al. Incubation of methamphetamine craving is associated with selective increases in expression of Bdnf and Trkb, glutamate receptors, and epigenetic enzymes in cue-activated Fos-expressing dorsal striatal neurons. J. Neurosci. 35, 8232–8244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heidbreder, C. A. & Groenewegen, H. J. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev. 27, 555–579 (2003).

    Article  PubMed  Google Scholar 

  73. West, E. A., Saddoris, M. P., Kerfoot, E. C. & Carelli, R. M. Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence. Eur. J. Neurosci. 39, 1891–1902 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li, X., Zeric, T., Kambhampati, S., Bossert, J. M. & Shaham, Y. The central amygdala nucleus is critical for incubation of methamphetamine craving. Neuropsychopharmacology 40, 1297–1306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shin, C. B. et al. Incubation of cocaine-craving relates to glutamate over-flow within ventromedial prefrontal cortex. Neuropharmacology 102, 103–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, W. L. et al. Relapse to cocaine-seeking after abstinence is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addict. Biol. 19, 77–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Sun, X., Zhao, Y. & Wolf, M. E. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J. Neurosci. 25, 7342–7351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Swinford-Jackson, S. E., Anastasio, N. C., Fox, R. G., Stutz, S. J. & Cunningham, K. A. Incubation of cocaine cue reactivity associates with neuroadaptations in the cortical serotonin (5-HT) 5-HT receptor (5-HTR) system. Neuroscience 324, 50–61 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Miller, B. W. et al. Cocaine craving during protracted withdrawal requires PKCɛ priming within vmPFC. Addict. Biol. http://dx.doi.org/10.1111/adb.12354 (2016).

  80. Ben-Shahar, O. et al. Deficits in ventromedial prefrontal cortex group 1 metabotropic glutamate receptor function mediate resistance to extinction during protracted withdrawal from an extensive history of cocaine self-administration. J. Neurosci. 33, 495–506a (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kasanetz, F. et al. Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Mol. Psychiatry 18, 729–737 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, B. T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Pelloux, Y., Murray, J. E. & Everitt, B. J. Differential roles of the prefrontal cortical subregions and basolateral amygdala in compulsive cocaine seeking and relapse after voluntary abstinence in rats. Eur. J. Neurosci. 38, 3018–3026 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Everitt, B. J., Cardinal, R. N., Parkinson, J. A. & Robbins, T. W. Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann. NY Acad. Sci. 985, 233–250 (2003).

    Article  PubMed  Google Scholar 

  86. Chase, H. W., Eickhoff, S. B., Laird, A. R. & Hogarth, L. The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol. Psychiatry 70, 785–793 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Koob, G. F. et al. Addiction as a stress surfeit disorder. Neuropharmacology 76, 370–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, L., Dempsey, J., Shaham, Y. & Hope, B. T. Differential long-term neuroadaptations of glutamate receptors in the basolateral and central amygdala after withdrawal from cocaine self-administration in rats. J. Neurochem. 94, 161–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Lu, L., Uejima, J. L., Gray, S. M., Bossert, J. M. & Shaham, Y. Systemic and central amygdala injections of the mGluR2/3 agonist LY379268 attenuate the expression of incubation of cocaine craving. Biol. Psychiatry 61, 591–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Corbit, L. H. & Balleine, B. W. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J. Neurosci. 25, 962–970 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zorrilla, E. P., Valdez, G. R. & Weiss, F. Changes in levels of regional CRF-like-immunoreactivity and plasma corticosterone during protracted drug withdrawal in dependent rats. Psychopharmacology (Berl.) 158, 374–381 (2001).

    Article  CAS  Google Scholar 

  92. Pollandt, S. et al. Cocaine withdrawal enhances long-term potentiation induced by corticotropin-releasing factor at central amygdala glutamatergic synapses via CRF, NMDA receptors and PKA. Eur. J. Neurosci. 24, 1733–1743 (2006).

    Article  PubMed  Google Scholar 

  93. Chen, B. et al. Cocaine-induced membrane adaptation in the central nucleus of amygdala. Neuropsychopharmacology 38, 2240–2248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wolff, S. B. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509, 453–458 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Luscher, C. Cocaine-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area. Cold Spring Harb. Perspect. Med. 3, a012013 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pignatelli, M. & Bonci, A. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron 86, 1145–1157 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, B. T. et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 59, 288–297 (2008). This study demonstrates that contingent cocaine administration leads to a strengthening of excitatory drive to dopamine neurons that persists for at least 3 months of abstinence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, L. et al. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol. Psychiatry 66, 137–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lu, L., Dempsey, J., Liu, S. Y., Bossert, J. M. & Shaham, Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J. Neurosci. 24, 1604–1611 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pu, L., Liu, Q. S. & Poo, M. M. BDNF-dependent synaptic sensitization in midbrain dopamine neurons after cocaine withdrawal. Nat. Neurosci. 9, 605–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Willuhn, I., Wanat, M. J., Clark, J. J. & Phillips, P. E. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr. Top. Behav. Neurosci. 3, 29–71 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Carelli, R. M. & West, E. A. When a good taste turns bad: neural mechanisms underlying the emergence of negative affect and associated natural reward devaluation by cocaine. Neuropharmacology 76, 360–369 (2014). The complexity of the relationship between reward and dopamine transmission is illustrated by this review article.

    Article  CAS  PubMed  Google Scholar 

  105. Calu, D., Nasser, H. & Shaham, Y. Unexpected results on the role of nucleus accumbens dopamine in stress-induced relapse. Biol. Psychiatry 77, 848–849 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Grigson, P. S. & Twining, R. C. Cocaine-induced suppression of saccharin intake: a model of drug-induced devaluation of natural rewards. Behav. Neurosci. 116, 321–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Saddoris, M. P., Wang, X., Sugam, J. A. & Carelli, R. M. Cocaine self-administration experience induces pathological phasic accumbens dopamine signals and abnormal incentive behaviors in drug-abstinent rats. J. Neurosci. 36, 235–250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Volkow, N. D., Fowler, J. S., Wang, G. J., Baler, R. & Telang, F. Imaging dopamine's role in drug abuse and addiction. Neuropharmacology 56 (Suppl. 1), 3–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Nader, M. A. et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat. Neurosci. 9, 1050–1056 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Beveridge, T. J., Smith, H. R., Nader, M. A. & Porrino, L. J. Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys. Neuropsychopharmacology 34, 1162–1171 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Gould, R. W., Duke, A. N. & Nader, M. A. PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology 84, 138–151 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Conrad, K. L., Ford, K., Marinelli, M. & Wolf, M. E. Dopamine receptor expression and distribution dynamically change in the rat nucleus accumbens after withdrawal from cocaine self-administration. Neuroscience 169, 182–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Everitt, B. J. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories — indications for novel treatments of addiction. Eur. J. Neurosci. 40, 2163–2182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jentsch, J. D. et al. Dissecting impulsivity and its relationships to drug addictions. Ann. NY Acad. Sci. 1327, 1–26 (2014).

    PubMed  Google Scholar 

  115. Neisewander, J. L., Cheung, T. H. & Pentkowski, N. S. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: implications for medications development. Neuropharmacology 76, 301–319 (2014). This article reviews the literature on dopamine and serotonin transmission during abstinence.

    Article  CAS  PubMed  Google Scholar 

  116. Neisewander, J. L. et al. Increases in dopamine D3 receptor binding in rats receiving a cocaine challenge at various time points after cocaine self-administration: implications for cocaine-seeking behavior. Neuropsychopharmacology 29, 1479–1487 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Xi, Z.-X. et al. Blockade of dopamine D3 receptors in the nucleus accumbens and central amygdala inhibits incubation of cocaine craving in rats. Addict. Biol. 18, 665–677 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Ben-Shahar, O. et al. Changes in levels of D1, D2, or NMDA receptors during withdrawal from brief or extended daily access to IV cocaine. Brain Res. 1131, 220–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Moore, R. J., Vinsant, S. L., Nader, M. A., Porrino, L. J. & Friedman, D. P. Effect of cocaine self-administration on striatal dopamine D1 receptors in rhesus monkeys. Synapse 28, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Caprioli, D. et al. Effect of the novel positive allosteric modulator of metabotropic glutamate receptor 2 AZD8529 on incubation of methamphetamine craving after prolonged voluntary abstinence in a rat model. Biol. Psychiatry 78, 463–473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Cannella, N. et al. The mGluR2/3 agonist LY379268 induced anti-reinstatement effects in rats exhibiting addiction-like behavior. Neuropsychopharmacology 38, 2048–2056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Scheyer, A. F., et al. AMPA receptor plasticity in accumbens core contributes to incubation of methamphetamine craving. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2016.04.003 (2016).

  124. Howell, L. L. & Cunningham, K. A. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol. Rev. 67, 176–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Anastasio, N. C. et al. Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence. Neuropsychopharmacology 39, 370–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Ortinski, P. I., Vassoler, F. M., Carlson, G. C. & Pierce, R. C. Temporally dependent changes in cocaine induced synaptic plasticity in the nucleus accumbens shell are reversed by D1-like dopamine receptor stimulation. Neuropsychopharmacology 37, 1671–1682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jasinska, A. J., Stein, E. A., Kaiser, J., Naumer, M. J. & Yalachkov, Y. Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci. Biobehav. Rev. 38, 1–16 (2014).

    Article  PubMed  Google Scholar 

  128. Keralapurath, M. M., Briggs, S. B. & Wagner, J. J. Cocaine self-administration induces changes in synaptic transmission and plasticity in ventral hippocampus. Addict. Biol. http://dx.doi.org/10.1111/adb.12345 (2015).

  129. Freeman, W. M. et al. Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration. Neuropsychopharmacology 33, 1807–1817 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Massart, R. et al. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. J. Neurosci. 35, 8042–8058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Reichel, C. M. & Bevins, R. A. Forced abstinence model of relapse to study pharmacological treatments of substance use disorder. Curr. Drug Abuse Rev. 2, 184–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bedi, G. et al. Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol. Psychiatry 69, 708–711 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang, G. et al. Effects of length of abstinence on decision-making and craving in methamphetamine abusers. PLoS ONE 8, e68791 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, P. et al. Incubation of alcohol craving during abstinence in patients with alcohol dependence. Addict. Biol. 20, 513–522 (2015).

    Article  PubMed  Google Scholar 

  135. Ahmed, S. H. The science of making drug-addicted animals. Neuroscience 211, 107–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Krasnova, I. N. et al. Incubation of methamphetamine and palatable food craving after punishment-induced abstinence. Neuropsychopharmacology 39, 2008–2016 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kupchik, Y. M. et al. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat. Neurosci. 18, 1230–1232 (2015). These results caution against classifying MSNs in the NAc strictly on the basis of dopamine receptor expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Smith, R. J., Lobo, M. K., Spencer, S. & Kalivas, P. W. Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr. Opin. Neurobiol. 23, 546–552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Goldstein, R. Z. & Volkow, N. D. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 159, 1642–1652 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Porrino, L. J., Lyons, D., Smith, H. R., Daunais, J. B. & Nader, M. A. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J. Neurosci. 24, 3554–3562 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Beveridge, T. J., Smith, H. R., Daunais, J. B., Nader, M. A. & Porrino, L. J. Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur. J. Neurosci. 23, 3109–3118 (2006).

    Article  PubMed  Google Scholar 

  143. Porrino, L. J., Smith, H. R., Nader, M. A. & Beveridge, T. J. The effects of cocaine: a shifting target over the course of addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1593–1600 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gozzi, A. et al. Neuroimaging evidence of altered fronto-cortical and striatal function after prolonged cocaine self-administration in the rat. Neuropsychopharmacology 36, 2431–2440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hammer, R. P. Jr., Pires, W. S., Markou, A. & Koob, G. F. Withdrawal following cocaine self-administration decreases regional cerebral metabolic rate in critical brain reward regions. Synapse 14, 73–80 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Macey, D. J., Rice, W. N., Freedland, C. S., Whitlow, C. T. & Porrino, L. J. Patterns of functional activity associated with cocaine self-administration in the rat change over time. Psychopharmacology (Berl.) 172, 384–392 (2004).

    Article  CAS  Google Scholar 

  147. Sun, W. & Rebec, G. V. Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J. Neurosci. 26, 8004–8008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wolf, M. E. The Bermuda Triangle of cocaine-induced neuroadaptations. Trends Neurosci. 33, 391–398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mu, P. et al. Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. J. Neurosci. 30, 3689–3699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dikshtein, Y. et al. β-endorphin via the delta opioid receptor is a major factor in the incubation of cocaine craving. Neuropsychopharmacology 38, 2508–2514 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Reppucci, C. J. & Petrovich, G. D. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-015-1081-0 (2015).

  152. Phillips, A. G., Ahn, S. & Howland, J. G. Amygdalar control of the mesocorticolimbic dopamine system: parallel pathways to motivated behavior. Neurosci. Biobehav. Rev. 27, 543–554 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Sinha, R., Shaham, Y. & Heilig, M. Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology (Berl.) 218, 69–82 (2011).

    Article  CAS  Google Scholar 

  154. Mantsch, J. R., Baker, D. A., Funk, D., Le, A. D. & Shaham, Y. Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41, 335–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Thiel, K. J. et al. Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect. Addict. Biol. 17, 365–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Chauvet, C., Goldberg, S. R., Jaber, M. & Solinas, M. Effects of environmental enrichment on the incubation of cocaine craving. Neuropharmacology 63, 635–641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Loweth, J. A., Glynn, R. M., Rosenkranz, J. A. & Wolf, M. E. Chronic stress exposure during early withdrawal from extended access cocaine self-administration facilitates incubation of cue-induced cocaine craving. Soc. Neurosci. Abstr. 41, 315.20 (2015).

    Google Scholar 

  158. Chen, B. et al. Sleep regulates incubation of cocaine craving. J. Neurosci. 35, 13300–13310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Marchant, N. J., Kaganovsky, K., Shaham, Y. & Bossert, J. M. Role of corticostriatal circuits in context-induced reinstatement of drug seeking. Brain Res. 1628, 219–232 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review includes work from my laboratory supported by US National Institutes of Health grants DA009621 and DA015835. I thank the members of my laboratory, Y. Shaham, R. Carelli and K. Szumlinski for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina E. Wolf.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Mechanisms contributing to CP-AMPAR elevation in the NAc during incubation of cocaine craving (PDF 142 kb)

Supplementary information S2 (table)

AMPAR plasticity in NAc during abstinence from non-contingent cocaine* (PDF 166 kb)

Supplementary information S3 (table)

Detection of CP-AMPARs in NAc during abstinence from cocaine self-administration* (PDF 167 kb)

Supplementary information S4 (box)

Epigenetic mechanisms contribute to incubation of cocaine craving (PDF 94 kb)

PowerPoint slides

Glossary

Addiction

A chronic disease that involves cycles of drug use, abstinence and relapse. It is characterized by compulsive drug seeking and use, despite harmful consequences.

Relapse

Resumption of drug taking in human drug users after a period of abstinence. Triggers for relapse include certain emotional states, stress and exposure to cues or environments that are associated with prior drug use.

Incubation

A time-dependent increase in cue-induced drug seeking that is observed in laboratory animals that are tested after different periods of abstinence from drug self-administration. Incubation can also be revealed when animals are returned to the self-administration context in the absence of the discrete cue.

Non-contingent drug administration

A type of drug administration regimen whereby the drug is administered by the experimenter to a laboratory animal.

Drug craving

An affective state in humans that may lead to drug taking. In rodents, craving is inferred from the observed drug-seeking operant response.

Drug self-administration

An experimental paradigm during which animals are trained to perform an operant response (such as a lever press or nose poke) to receive an intravenous drug infusion that is often paired with a discrete cue (such as a tone or light) or a specific context.

Contingent drug administration

A type of drug administration regimen whereby a laboratory animal performs an operant response to obtain the drug.

Drug seeking

Behaviour that is assessed, after drug self-administration regimens in laboratory animals, by measuring the number of operant responses performed by an animal under conditions in which the operant responses (that previously delivered the drug) are no longer drug reinforced.

Extinction training

A procedure carried out after stable drug self-administration is established that leads to cessation of drug seeking. During the procedure, animals undergo repeated sessions during which the operant response no longer results in drug delivery.

Reinstatement test

An experimental procedure that is designed to model relapse in laboratory animals. It is performed after a drug self-administration regimen and a period of extinction training. During the reinstatement test, exposure to a drug-associated cue or context, a stressor or non-contingent drug injection leads to resumption of drug seeking.

Seeking test

An experimental procedure to assess drug craving and relapse in laboratory animals during abstinence from drug self-administration regimens (but without a period of extinction training). During a cue-induced seeking test, operant responses lead to presentation of the discrete cue that was previously paired with drug infusions but do not cause delivery of the drug.

Extended-access cocaine self-administration

Regimens that use longer daily sessions of self-administration (for example, 6 hours per session for 10–20 days) or shorter daily sessions (for example, 2 hours) for 1–2 months. Such regimens produce behavioural changes that are thought to model compulsive drug seeking in addicts.

Limited-access cocaine self-administration

Regimens during which cocaine is available for 1–2 hours per session for 1–2 weeks; these regimens are not thought to model compulsive drug seeking in addicts.

Withdrawal day

(WD). A term used to describe the duration of abstinence in experimental models.

Ca2+-permeable AMPA receptors

(CP-AMPARs). AMPARs that lack the GluA2 subunit (or that contain unedited GluA2) and therefore exhibit permeability to Ca2+. Compared to Ca2+-impermeable-AMPARs, they exhibit larger single-channel conductance and faster kinetics, and inward rectification owing to voltage-dependent block by intracellular polyamines.

Ca2+-impermeable AMPA receptors

(CI-AMPARs). AMPARs that contain an edited GluA2 subunit and are therefore impermeable to Ca2+. Most AMPARs in the brain are of this type.

Silent synapse

A synapse that contains NMDA receptors but not AMPA receptors, and is therefore silent at the hyperpolarized membrane potentials at which synaptic transmission is typically initiated.

Second-order schedule of reinforcement

A procedure designed to model 'real world' seeking of drugs by humans, which is highly driven by cues and only sporadically results in drug delivery. During the procedure, rats respond to a cocaine-associated cue for a prolonged period to obtain an infusion of cocaine.

Reversible inactivation

An experimental procedure during which drugs that inhibit neuronal activity are infused into a particular brain region of an experimental animal before a behavioural test in order to evaluate the requirement for that brain region in the expression of the behaviour.

Pavlovian-to-instrumental transfer

(PIT). The ability of a Pavlovian cue previously paired with a positive reinforcer to enhance operant (instrumental) responding for the same reinforcer when presented unexpectedly (independently of the operant response).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 17, 351–365 (2016). https://doi.org/10.1038/nrn.2016.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing