Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adult neurogenesis and functional plasticity in neuronal circuits

Key Points

  • The adult brain is a plastic place. Neuronal responses to a changing environment can occur at the level of molecules, spines, dendrites, axons and, with processes of adult neurogenesis, at the level of entire cells.

  • Neurogenesis definitely occurs in two regions of the adult brain: the subventricular zone (SVZ) lining the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus.

  • Neuroblasts from the SVZ migrate along the rostral migratory stream (RMS) to provide new inhibitory granule cells and glomerular cells in the olfactory bulb. Newborn cells from the SGZ migrate to the granular layer of the dentate gyrus, where most of them become excitatory granule cells.

  • The functional maturation of adult-born cells always involves the expression of neurotransmitter receptors before synaptic activity, and the presence of (excitatory) GABA (γ-aminobutyric acid)-mediated influences prior to glutamatergic input. But other maturational features depend on specific cell types, with, for example, olfactory bulb granule cells being late to develop sodium-based action potentials.

  • Factors intrinsic to adult-born cells influence many facets of their maturation. Proliferation and cell fate decisions are particularly strongly controlled by the proteins expressed by neuroblasts.

  • Factors extrinsic to adult-born cells also have a huge influence on all processes of neurogenesis. In this way, adult neurogenesis represents another weapon in the brain's plasticity armoury for dealing with a constantly changing world.

  • With respect to its possible functions, adult neurogenesis might alter the olfactory bulb and hippocampus at the cellular, network and system levels. Computational models suggest that cell turnover might be especially beneficial for the learning of new information.

  • Definitive experiments to demonstrate the function(s) of adult neurogenesis await manipulations that can specifically and completely eliminate it. However, numerous lines of correlative and intervention evidence suggest that hippocampal neurogenesis might be crucial for spatial learning, and that olfactory bulb neurogenesis could be important for sensory discrimination.

Abstract

The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain — the olfactory bulb and the dentate gyrus — new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postmitotic maturation of newborn neurons in the adult brain.
Figure 2: Intrinsic programmes and external factors controlling adult neurogenesis in the subventricular zone.
Figure 3: Intrinsic programmes and external factors controlling adult neurogenesis in the dentate gyrus.
Figure 4: Possible functions of newborn neurons at the cellular and network levels.

Similar content being viewed by others

References

  1. Harzsch, S. & Dawirs, R. R. Neurogenesis in the developing crab brain: postembryonic generation of neurons persists beyond metamorphosis. J. Neurobiol. 29, 384–398 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Goldman, S. A. & Nottebohm, F. Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl Acad. Sci. USA 80, 2390–2394 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altman, J. & Das, G. D. Post-natal origin of microneurones in the rat brain. Nature 207, 953–956 (1965).

    Article  CAS  PubMed  Google Scholar 

  4. Gould, E., Reeves, A. J., Graziano, M. S. & Gross, C. G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Kornack, D. R. & Rakic, P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl Acad. Sci. USA 96, 5768–5773 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nature Med. 4, 1313–1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Kempermann, G., Wiskott, L. & Gage, F. H. Functional significance of adult neurogenesis. Curr. Opin. Neurobiol. 14, 186–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Rakic, P. Adult neurogenesis in mammals, an identity crisis. J. Neurosci. 22, 614–618 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alvarez-Buylla, A. & Garcia-Verdugo, J. M. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palmer, T. D., Ray, J. & Gage, F. H. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bernier, P. J., Bedard, A., Vinet, J., Levesque, M. & Parent, A. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc. Natl Acad. Sci. USA 99, 11464–11469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gritti, A. et al. Multipotent neural stem cells reside into the rostral extension and OB of adult rodents. J. Neurosci. 22, 437–445 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, M. et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA 100, 7925–7930 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kokoeva, M., Yin, H. & Flier, J. S. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310, 679–683 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Bauer, S., Hay, M., Amilhon, B., Jean, A. & Moyse, E. In vivo neurogenesis in the dorsal vagal complex of the adult rat brainstem. Neuroscience 130, 75–90 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kornack, D. R. & Rakic, P. Cell proliferation without neurogenesis in adult primate neocortex. Science 294, 2127–2130 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Lie, D. C. et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci. 22, 6639–6649 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koketsu, D., Mikami, A., Miyamoto, Y. & Hisatsune, T. Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J. Neurosci. 23, 937–942 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frielingsdorf, H., Schwarz, K., Brundin, P. & Mohapel, P. No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA 101, 10177–10182 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doetsch, F., Caillé, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).A classic paper for anyone interested in the fields of adult neural stem cells.

    Article  CAS  PubMed  Google Scholar 

  23. Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci. 7, 1233–1241 (2004).Establishes the cellular identity in vivo of adult multipotent neural progenitors responsible for constitutive adult neurogenesis.

    Article  CAS  PubMed  Google Scholar 

  25. Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  26. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Jankovski, A. & Sotelo, C. Subventricular zone–olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J. Comp. Neurol. 371, 376–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Cameron, H. A. & McKay, R. D. Adult neurogenesis produces a large pool of new granule cells in the DG. J. Comp. Neurol. 435, 406–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the DG of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stanfield, B. B. & Trice, J. E. Evidence that granule cells generated in the DG of adult rats extend axonal projections. Exp. Brain Res. 72, 399–406 (1988).

    CAS  PubMed  Google Scholar 

  31. Markakis, E. A. & Gage, F. H. Adult-generated neurons in the DG send axonal projections to field CA3 and are surrounded by synaptic vesicles. J. Comp. Neurol. 406, 449–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Doetsch, F. The glial identity of neural stem cells. Nature Neurosci. 6, 1127–1134 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Alvarez-Buylla, A. & Lim, D. A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Ming, G. L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, C., Teng, E. M., Summers, R. G. Jr, Ming, G. -L. & Gage, F. H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seki, T. & Arai, Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the DG of the adult rat. J. Neurosci. 13, 2351–2358 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brandt, M. D. et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol. Cell. Neurosci. 24, 603–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Seri, B., Garcia-Verdugo, J. M., Collado-Morente, L., McEwen, B. S. & Alvarez-Buylla, A. Cell types, lineage, and architecture of the germinal zone in the adult DG. J. Comp. Neurol. 478, 359–378 (2004).

    Article  PubMed  Google Scholar 

  39. Wang, L. P., Kempermann, G. & Kettenmann, H. A subpopulation of precursor cells in the mouse DG receives synaptic GABAergic input. Mol. Cell. Neurosci. 29, 181–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–739 (2002).

    Article  CAS  Google Scholar 

  42. Deisseroth, K. et al. Excitation–neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, X., Wang, Q., Haydar, T. F. & Bordey, A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nature Neurosci. 8, 1179–1187 (2005).Shows that GABA released from neuroblasts provides a feedback mechanism to control the proliferation of GFAP-expressing progenitors.

    Article  CAS  PubMed  Google Scholar 

  44. Overstreet, L. S. et al. A transgenic marker for newly born granule cells in DG. J. Neurosci. 24, 3251–3259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Overstreet-Wadiche, L. S., Bromberg, D. A., Bensen, A. L. & Westbrook, G. L. GABAergic signaling to newborn neurons in DG. J. Neurophysiol. 94, 4528–4532 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Espósito, M. S. et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J. Neurosci. 25, 10074–10086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).The first paper to show that new neurons in the adult hippocampus become functional.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, S., Scott, B. W. & Wojtowicz, J. M. Heterogenous properties of dentate granule neurons in the adult rat. J. Neurobiol. 42, 248–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Snyder, J. S., Kee, N. & Wojtowicz, J. M. Effects of adult neurogenesis on synaptic plasticity in the rat DG. J. Neurophysiol. 85, 2423–2431 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Soares, S. & Sotelo, C. Adult neural stem cells from the mouse subventricular zone are limited in migratory ability compared to progenitor cells of similar origin. Neuroscience 128, 807–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Raineteau, O., Rietschin, L., Gradwohl, G., Guillemot, F. & Gahwiler, B. H. Neurogenesis in hippocampal slice cultures. Mol. Cell. Neurosci. 26, 241–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Kamada, M. et al. Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus. Eur. J. Neurosci. 20, 2499–2508 (2004).

    Article  PubMed  Google Scholar 

  54. Liu, S. et al. Generation of functional inhibitory neurons in the adult rat hippocampus. J. Neurosci. 23, 732–736 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gutierrez, R. et al. Plasticity of the GABAergic phenotype of the 'glutamatergic' granule cells of the rat DG. J. Neurosci. 23, 5594–5598 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Petreanu, L. & Alvarez-Buylla, A. Maturation and death of adult-born OB granule neurons: role of olfaction. J. Neurosci. 22, 6106–6113 (2002).An elegant study of the maturation and elimination of newborn bulbar interneurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Belluzzi, O., Benedusi, M., Ackman, J. & LoTurco, J. J. Electrophysiological differentiation of new neurons in the OB. J. Neurosci. 23, 10411–10418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carleton, A., Petreanu, L. T., Lansford, R., Alvarez-Buylla, A. & Lledo, P. -M. Becoming a new neuron in the adult OB. Nature Neurosci. 6, 507–518 (2003).References 57 and 58 physiologically characterize newborn periglomerular and granular cells, showing that they are functional neurons that synaptically integrate into olfactory bulb circuitry.

    Article  CAS  PubMed  Google Scholar 

  59. Winner, B., Cooper-Kuhn, C. M., Aigner, R., Winkler, J. & Kuhn, H. G. Long-term survival and cell death of newly generated neurons in the adult rat OB. Eur. J. Neurosci. 16, 1681–1689 (2002).

    Article  PubMed  Google Scholar 

  60. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).One of the first demonstrations that hippocampal neurogenesis requires the proximity of astrocytes.

    Article  CAS  PubMed  Google Scholar 

  62. Wurmser, A. E. et al. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356 (2004).The first results to show that endothelial cells induce conversion of neural stem cells into an endothelial-like population.

    Article  CAS  PubMed  Google Scholar 

  63. Yoshikawa, K. Cell cycle regulators in neural stem cells and postmitotic neurons. Neurosci. Res. 37, 1–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Cooper-Kuhn, C. M. et al. Impaired adult neurogenesis in mice lacking the transcription factor E2F1. Mol. Cell. Neurosci. 21, 312–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Conover, J. C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nature Neurosci. 3, 1091–1097 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Holmberg, J. et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19, 462–471 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McMahon, A. P., Ingham, P. W. & Tabin, C. J. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53, 1–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci. 6, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Lie, D. C. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).The first identification of an instructive factor for neurogenesis from adult neural stem cells.

    Article  CAS  PubMed  Google Scholar 

  71. Amoureux, M. C., Cunningham, B. A., Edelman, G. M. & Crossin, K. L. N-CAM binding inhibits the proliferation of hippocampal progenitor cells and promotes their differentiation to a neuronal phenotype. J. Neurosci. 20, 3631–3640 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Belvindrah, R., Rougon, G. & Chazal, G. Increased neurogenesis in adult mCD24-deficient mice. J. Neurosci. 22, 3594–3607 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Caillé, I. et al. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131, 2173–2181 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Lim, D. A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).One of the first papers to show the molecular signals that are required for the neurogenic lineage to be maintained throughout adult life.

    Article  CAS  PubMed  Google Scholar 

  75. Ueki, T. et al. A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J. Neurosci. 23, 11732–11740 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fan, X. T., Xu, H. W., Cai, W. Q., Yang, H. & Liu, S. Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the DG of adult rats. Neurosci. Lett. 366, 107–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Hitoshi, S. et al. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev. 18, 1806–1811 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grandbarbe, L. et al. Delta–Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130, 1391–1402 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shi, Y. et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427, 78–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Hack, M. A. et al. Neuronal fate determinants of adult OB neurogenesis. Nature Neurosci. 8, 865–871 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Kohwi, M., Osumi, N., Rubenstein, J. L. & Alvarez-Buylla, A. Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the OB. J. Neurosci. 25, 6997–7003 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maekawa, M. et al. Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10, 1001–1014 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Parras, C. M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bolteus, A. J. & Bordey, A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci. 24, 7623–7631 (2004).One of the first papers to demonstrate the influence of astrocyte-like cells on SVZ-derived precursor migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abrous, D. N., Koehl, M. & Le Moal, M. Adult neurogenesis: from precursors to network and physiology. Physiol. Rev. 85, 523–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Cameron, H. A., McEwen, B. S. & Gould, E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the DG. J. Neurosci. 15, 4687–4692 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A. & Fuchs, E. Neurogenesis in the DG of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17, 2492–2498 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bernabeu, R. & Sharp, F. R. NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J. Cereb. Blood Flow Metab. 20, 1669–1680 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Yoshimizu, T. & Chaki, S. Increased cell proliferation in the adult mouse hippocampus following chronic administration of group II metabotropic glutamate receptor antagonist, MGS0039. Biochem. Biophys. Res. Commun. 315, 493–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Bai, F., Bergeron, M. & Nelson, D. L. Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology 44, 1013–1021 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Dawirs, R. R., Hildebrandt, K. & Teuchert-Noodt, G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J. Neural. Transm. 105, 317–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Yamaguchi, M. et al. Repetitive cocaine administration decreases neurogenesis in adult rat hippocampus. Ann. NY Acad. Sci. 1025, 351–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Kippin, T. E., Kapur, S. & van der Kooy, D. Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J. Neurosci. 25, 5815–5823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baker, S. A., Baker, K. A. & Hagg, T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur. J. Neurosci. 20, 575–579 (2004).

    Article  PubMed  Google Scholar 

  96. Hoglinger, G. U. et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neurosci. 7, 726–735 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Banasr, M., Hery, M., Printemps, R. & Daszuta, A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the DG and the subventricular zone. Neuropsychopharmacology 29, 450–460 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Radley, J. J. & Jacobs, B. L. 5-HT1A receptor antagonist administration decreases cell proliferation in the DG. Brain Res. 955, 264–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Brezun, J. M. & Daszuta, A. Depletion in serotonin decreases neurogenesis in the DG and the subventricular zone of adult rats. Neuroscience 89, 999–1002 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Cooper-Kuhn, C. M., Winkler, J. & Kuhn, H. G. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J. Neurosci. Res. 77, 155–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Mohapel, P., Leanza, G., Kokaia, M. & Lindvall, O. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol. Aging 26, 939–946 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Packer, M. A. et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl Acad. Sci. USA 100, 9566–9571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Moreno-Lopez, B. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and OB. J. Neurosci. 24, 85–95 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Eisch, A. J., Barrot, M., Schad, C. A., Self, D. W. & Nestler, E. J. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl Acad. Sci. USA 97, 7579–7584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Persson, A. I. et al. μ- and δ-opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur. J. Neurosci. 17, 1159–1172 (2003).

    Article  PubMed  Google Scholar 

  108. Rueda, D., Navarro, B., Martinez-Serrano, A., Guzman, M. & Galve-Roperh, I. The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J. Biol. Chem. 277, 46645–46650 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Herrera, D. G. et al. Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant. Proc. Natl Acad. Sci. USA 100, 7919–7924 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aberg, E., Hofstetter, C. P., Olson, L. & Brene, S. Moderate ethanol consumption increases hippocampal cell proliferation and neurogenesis in the adult mouse. Int. J. Neuropsychopharmacol. 8, 557–567 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Jiang, W. et al. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J. Clin. Invest. 115, 3104–3116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Katoh-Semba, R. et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J. 16, 1328–1330 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Zigova, T., Pencea, V., Wiegand, S. J. & Luskin, M. B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult OB. Mol. Cell. Neurosci. 11, 234–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Emsley, J. G. & Hagg, T. Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp. Neurol. 183, 298–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Chojnacki, A., Shimazaki, T., Gregg, C., Weinmaster, G. & Weiss, S. Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J. Neurosci. 23, 1730–1741 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jin, K. et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2, 175–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Jin, K. et al. Cerebral neurogenesis is induced by intranasal administration of growth factors. Ann. Neurol. 53, 405–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J. & Gage, F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aberg, M. A. et al. IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol. Cell. Neurosci. 24, 23–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Enwere, E. et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24, 8354–8365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl Acad. Sci. USA 99, 11946–11950 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Greenberg, D. A. & Jin, K. From angiogenesis to neuropathology. Nature 438, 954–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Cao, L. et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genet. 36, 827–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Consiglio, A. et al. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc. Natl Acad. Sci. USA 101, 14835–14840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cameron, H. A. & Gould, E. Adult neurogenesis is regulated by adrenal steroids in the DG. Neuroscience 61, 203–209 (1994).The first study identifying an external factor that regulates neuronal birth in the adult dentate gyrus.

    Article  CAS  PubMed  Google Scholar 

  127. Tanapat, P., Hastings, N. B., Reeves, A. J. & Gould, E. Estrogen stimulates a transient increase in the number of new neurons in the mk DG of the adult female rat. J. Neurosci. 19, 5792–5801 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Coe, C. L. et al. Prenatal stress diminishes neurogenesis in the DG of juvenile rhesus monkeys. Biol. Psychiatry 54, 1025–1034 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Montaron, M. F. et al. Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol. Aging 13 Jun 2005 (10.1016/j.neurobiolaging.2005.02.014).

  130. Rodriguez, J. J. et al. Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus. Eur. J. Neurosci. 10, 2994–3006 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Shingo, T. et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299, 117–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Lemkine, G. F. et al. Adult neural stem cell cycling in vivo requires thyroid hormone and its α receptor. FASEB J. 19, 863–865 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Mayo, W. et al. Pregnenolone sulfate enhances neurogenesis and PSA-NCAM in young and aged hippocampus. Neurobiol. Aging 26, 103–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl Acad. Sci. USA 96, 13427–13431 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brown, J. et al. Enriched environment and physical activity stimulate hippocampal but not OB neurogenesis. Eur. J. Neurosci. 17, 2042–2046 (2003).

    Article  PubMed  Google Scholar 

  136. Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. Exercise and brain neurotrophins. Nature 373, 109 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).One of the first papers to study environmental factors that regulate new neuron birth in the dentate gyrus.

    Article  CAS  PubMed  Google Scholar 

  138. Kempermann, G., Brandon, E. P. & Gage, F. H. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult DG. Curr. Biol. 8, 939–942 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Mirescu, C., Peters, J. D. & Gould, E. Early life experience alters response of adult neurogenesis to stress. Nature Neurosci. 7, 841–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Kozorovitskiy, Y. & Gould, E. Dominance hierarchy influences adult neurogenesis in the DG. J. Neurosci. 24, 6755–6759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Guzman-Marin, R. et al. Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur. J. Neurosci. 22, 2111–2116 (2005).

    Article  PubMed  Google Scholar 

  142. Bonfanti, L. & Theodosis, D. T. Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the OB. Neuroscience 62, 291–305 (1994).

    Article  CAS  PubMed  Google Scholar 

  143. Cremer, H. et al. Inactivation of the N-CAM gene in mice results in size reduction of the OB and deficits in spatial learning. Nature 367, 455–459 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331–336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nguyen-Ba-Charvet, K. T. et al. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J. Neurosci. 24, 1497–1506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anton, E. S. et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nature Neurosci. 7, 1319–1328 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Emsley, J. G. & Hagg, T. α6/β1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp. Neurol. 183, 273–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, G. & Rao, Y. Neuronal migration from the forebrain to the OB requires a new attractant persistent in the OB. J. Neurosci. 23, 6651–6659 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kirschenbaum, B., Doetsch, F., Lois, C. & Alvarez-Buylla, A. Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the OB. J. Neurosci. 19, 2171–2180 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hack, I., Bancila, M., Loulier, K., Carroll, P. & Cremer, H. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nature Neurosci. 5, 939–945 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Saghatelyan, A., de Chevigny, A., Schachner, M. & Lledo, P. M. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nature Neurosci. 7, 347–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Ng, K. L. et al. Dependence of OB neurogenesis on prokineticin 2 signaling. Science 308, 1923–1927 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Dayer, A. G., Ford, A. A., Cleaver, K. M., Yassaee, M. & Cameron, H. A. Short-term and long-term survival of new neurons in the rat DG. J. Comp. Neurol. 460, 563–572 (2003).

    Article  PubMed  Google Scholar 

  154. Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O. & Eriksson, P. S. Enriched environment increases neurogenesis in the adult rat DG and improves spatial memory. J. Neurobiol. 39, 569–578 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Leuner, B. et al. Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J. Neurosci. 24, 7477–7481 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mechawar, N., Saghatelyan, A., Grailhe, R., Lledo, P. -M. & Changeux, J. P. Nicotinic receptors regulate the survival of newborn neurons in the adult OB. Proc. Natl Acad. Sci. USA 101, 9822–9826 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Corotto, F. S., Henegar, J. R. & Maruniak, J. A. Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the OB of the adult mouse. Neuroscience 61, 739–744 (1994).

    Article  CAS  PubMed  Google Scholar 

  158. Rochefort, C., Gheusi, G., Vincent, J. D. & Lledo, P. -M. Enriched odor exposure increases the number of newborn neurons in the adult OB and improves odor memory. J. Neurosci. 22, 2679–2689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Saghatelyan, A. et al. Activity-dependent adjustments of the inhibitory network in the adult OB following early postnatal deprivation. Neuron 46, 103–116 (2005).Provides striking evidence that newborn neurons bring unique features to the mature neuronal network.

    Article  CAS  PubMed  Google Scholar 

  160. Yamaguchi, M. & Mori, K. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse OB. Proc. Natl Acad. Sci. USA 102, 9697–9702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Miwa, N. & Storm, D. R. Odorant-induced activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in the OB promotes survival of newly formed granule cells. J. Neurosci. 25, 5404–5412 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rochefort, C. & Lledo, P. M. Short-term survival of newborn neurons in the adult olfactory bulb after exposure to a complex odor environment. Eur. J. Neurosci. 22, 2863–2870 (2005).

    Article  PubMed  Google Scholar 

  163. Kuhn, H. G. et al. Increased generation of granule cells in adult Bcl-2-overexpressing mice: a role for cell death during continued hippocampal neurogenesis. Eur. J. Neurosci. 22, 1907–1915 (2005).

    Article  PubMed  Google Scholar 

  164. Magavi, S. S. P., Mitchell, B. D., Szentirmai, O. & Macklis, J. D. Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J. Neurosci. 25, 10729–10739 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lemaire, V., Aurousseau, C., Le Moal, M. & Abrous, D. N. Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur. J. Neurosci. 11, 4006–4014 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Drapeau, E. et al. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc. Natl Acad. Sci. USA 100, 14385–14390 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Merrill, D. A., Karim, R., Darraq, M., Chiba, A. A. & Tuszynski, M. H. Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. J. Comp. Neurol. 459, 201–207 (2003).

    Article  PubMed  Google Scholar 

  168. Dobrossy, M. D. et al. Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol. Psychiatry 8, 974–982 (2003).Highlights the complex interactions between cognitive processes and adult neurogenesis. Depending on the precise demands of the task, and on the age of newborn cells, water maze training can have different effects on cell proliferation and survival.

    Article  CAS  PubMed  Google Scholar 

  169. Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA 100, 6777–6782 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kempermann, G. & Gage, F. H. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur. J. Neurosci. 16, 129–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Feng, R. et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32, 911–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Gheusi, G. et al. Importance of newly generated neurons in the adult OB for odor discrimination. Proc. Natl Acad. Sci. USA 97, 1823–1828 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gilbert, M. E., Kelly, M. E., Samsam, T. E. & Goodman, J. H. Chronic developmental lead exposure reduces neurogenesis in adult rat hippocampus but does not impair spatial learning. Toxicol. Sci. 86, 365–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Ueda, S., Sakakibara, S. & Yoshimoto, K. Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning. Neuroscience 135, 395–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Lledo, P. -M., Gheusi, G. & Vincent, J. D. Information processing in the mammalian olfactory system. Physiol. Rev. 85, 281–317 (2005).

    Article  PubMed  Google Scholar 

  176. Gould, E. et al. Learning enhances adult neurogenesis in the hippocampal formation. Nature Neurosci. 3, 260–265 (1999).

    Article  Google Scholar 

  177. Ambrogini, P. et al. Learning may reduce neurogenesis in adult rat DG. Neurosci. Lett. 359, 13–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Shors, T. J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–376 (2001).One of the most direct attempts to demonstrate a role for adult neurogenesis in learning. Reduced hippocampal neurogenesis due to application of the toxin MAM is associated with impaired hippocampus-dependent trace conditioning.

    Article  CAS  PubMed  Google Scholar 

  179. Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y. & Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12, 578–584 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Moser, E. I. Altered inhibition of dentate granule cells during spatial learning in an exploration task. J. Neurosci. 16, 1247–1259 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).Another of the most direct attempts to demonstrate a role for adult neurogenesis in learning. Reduced hippocampal neurogenesis due to irradiation treatment is associated with impaired long-term memory in the spatial water maze.

    Article  CAS  PubMed  Google Scholar 

  182. Raber, J. et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat. Res. 162, 39–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nature Med. 8, 955–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  184. Cecchi, G. A., Petreanu, L. T., Alvarez-Buylla, A. & Magnasco, M. O. Unsupervised learning and adaptation in a model of adult neurogenesis. J. Comput. Neurosci. 11, 175–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Becker, S. A computational principle for hippocampal learning and neurogenesis. Hippocampus 15, 722–738 (2005).

    Article  PubMed  Google Scholar 

  186. Meltzer, L. A., Yabaluri, R. & Deisseroth, K. A role for circuit homeostasis in adult neurogenesis. Trends Neurosci. 28, 653–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Chambers, R. A., Potenza, M. N., Hoffman, R. E. & Miranker, W. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology 29, 747–758 (2004).A computational model in which increased turnover of cells aids the learning of new information and also facilitates the forgetting of old information.

    Article  PubMed  Google Scholar 

  188. Kempermann, G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J. Neurosci. 22, 635–638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lynch, G. & Granger, R. in Olfaction (eds Davis, J. L. & Eichenbaum, H.) 141–165 (MIT Press, Boston, Massachusetts, 1991).

    Google Scholar 

  190. Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  Google Scholar 

  191. Brunjes, P. C. Unilateral naris closure and olfactory system development. Brain Res. Brain Res. Rev. 19, 146–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  192. Brennan, P., Kaba, H. & Keverne, E. B. Olfactory recognition: a simple memory system. Science 250, 1223–1226 (1990).

    Article  CAS  PubMed  Google Scholar 

  193. Lemasson, M., Saghatelyan, A., Olivo-Marin, J. C. & Lledo, P. -M. Neonatal and adult neurogenesis provide two distinct populations of granule cells in the mouse OB. J. Neurosci. 25, 6816–6825 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Parent, J. M. Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9, 261–272 (2003).

    Article  PubMed  Google Scholar 

  195. Dash, P. K., Mach, S. A. & Moore, A. N. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J. Neurosci. Res. 63, 313–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Yagita, Y. et al. Differential expression of Musashi1 and nestin in the adult rat hippocampus after ischemia. J. Neurosci. Res. 69, 750–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Kokaia, Z. & Lindvall, O. Neurogenesis after ischaemic brain insults. Curr. Opin. Neurobiol. 13, 127–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Rice, A. C. et al. Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp. Neurol. 183, 406–417 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Med. 8, 963–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  200. Jin, K. et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol. Cell. Neurosci. 24, 171–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Zhang, R. et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J. Cereb. Blood Flow Metab. 24, 441–448 (2004).

    Article  PubMed  Google Scholar 

  202. Zhang, R. L., Zhang, Z. G., Zhang, L. & Chopp, M. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105, 33–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Buffo, A. et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc. Natl Acad. Sci. USA 102, 18183–18188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Curtis, M. A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl Acad. Sci. USA 100, 9023–9027 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Jin, K. et al. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APP) mice. Proc. Natl Acad. Sci. USA 101, 13363–13367 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Yoshimura, S. et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc. Natl Acad. Sci. USA 98, 5874–5879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhu, D. Y., Liu, S. H., Sun, H. S. & Lu, Y. M. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent DG. J. Neurosci. 23, 223–229 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Manev, H., Uz, T., Manev, R. & Zhang, Z. Neurogenesis and neuroprotection in the adult brain. A putative role for 5-lipoxygenase? Ann. NY Acad. Sci. 939, 45–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  209. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Nelson, P. T. et al. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol. 160, 1201–1206 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    Article  CAS  PubMed  Google Scholar 

  212. Morshead, C. M. & van der Kooy, D. Disguising adult neural stem cells. Curr. Opin. Neurobiol. 14, 125–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  213. Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Kulkarni, V. A., Jha, S. & Vaidya, V. A. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur. J. Neurosci. 16, 2008–2012 (2002).

    Article  PubMed  Google Scholar 

  215. Mercer, A. et al. PACAP promotes neural stem cell proliferation in adult mouse brain. J. Neurosci. Res. 76, 205–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  216. Lu, L. et al. Modification of hippocampal neurogenesis and neuroplasticity by social environments. Exp. Neurol. 183, 600–609 (2003).

    Article  PubMed  Google Scholar 

  217. Derrick, B. E., York, A. D. & Martinez, J. L. Jr. Increased granule cell neurogenesis in the adult DG following mossy fiber stimulation sufficient to induce long-term potentiation. Brain Res. 857, 300–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Lucassen, P. J., Fuchs, E. & Czeh, B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal DG and temporal cortex. Biol. Psychiatry 55, 789–796 (2004).

    Article  CAS  PubMed  Google Scholar 

  219. Jang, M.H. et al. Alcohol and nicotine reduce cell proliferation and enhance apoptosis in DG. Neuroreport 13, 1509–1513 (2002).

    Article  CAS  PubMed  Google Scholar 

  220. Sawamoto, K. et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neurosci. 9, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Götz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pasteur Institute (GPH 'stem cells'), the Fondation pour la Recherche Médicale, the Association Française Contre les Myopathies, the Fédération pour la Recherche sur le Cerveau and a grant from Région Ile-de-France (all in France). We apologize to those authors whose references, although relevant to this subject, have not been included in this review owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Marie Lledo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Perception and Memory Laboratory (Pasteur Institute)

Glossary

Adult neurogenesis

The entire set of events leading to the production of new neurons in the adult brain, from precursor cell division to functionally integrated survival.

Precursors

CNS stem cells and all progenitors are generally referred to as precursor cells.

Progenitor

A mitotic cell with a fast cell-division cycle that retains the ability to proliferate and to give rise to terminally differentiated cells but that is not capable of indefinite self-renewal.

Retrovirus

An RNA virus that uses reverse transcriptase to convert its RNA into DNA.

Neurogenic niche

Regions where the degree of neurogenesis depends on the interaction of the microenvironment with precursor cells that have neurogenic potential.

Antisense oligodeoxynucleotide

A small deoxynucleotide that is complementary to a select region of the mRNA that encodes the protein of interest. It can potentially interfere with transcription and translation, thereby decreasing gene expression. These molecules have been used in vivo to selectively inhibit the expression of peptides and proteins in the brain. This provides a simple way of studying the effects of the absence of a gene product in simple organisms and in cells.

Stereological analyses

Classic stereology microscopy has developed along independent pathways as a methodology to provide a quantitative understanding of the structure of the brain. This type of analysis has concentrated on the unbiased numerical estimation of parameters such as length, area, volume and population size that characterize entire regions of the brain as well as individual elements within them, for example, cell volume.

Trace eyeblink conditioning

A hippocampus-dependent task in which animals must associate a conditioned stimulus with an eyeblink-producing unconditioned stimulus. The key 'trace' aspect comes from the fact that the two stimuli are separated in time.

Morris water maze

In its most common form, a test of spatial learning and memory, in which animals must use spatial cues to locate a hidden platform in a pool of opaque water.

Long-term potentiation

(LTP). An enduring increase in the amplitude of excitatory postsynaptic potentials as a result of high-frequency (tetanic) stimulation of afferent pathways. LTP is often considered to be the cellular basis of learning and memory in vertebrates.

Barnes maze

In its most common form, a challenging test of spatial learning and memory. Animals must locate a single escape tunnel hidden under one of 40 possible entrance holes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lledo, PM., Alonso, M. & Grubb, M. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7, 179–193 (2006). https://doi.org/10.1038/nrn1867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing