Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complex brain networks: graph theoretical analysis of structural and functional systems

A Corrigendum to this article was published on 04 March 2009

Key Points

  • Understanding the network organization of the brain has been a long-standing challenge for neuroscience. In the past decade, developments in graph theory have provided many new methods for topologically analysing complex networks, some of which have already been translated to the characterization of anatomical and functional brain networks.

  • Anatomical networks at whole-brain and cellular scales in several species consistently demonstrate conservation of wiring costs and small-world topology (high clustering and short path length). Human brain anatomical networks, derived from MRI or diffusion tensor imaging data, have high-degree cortical 'hubs' and modular and hierarchical properties.

  • Functional networks also demonstrate small-world properties at whole-brain and cellular spatial scales. Additionally, complex network properties including small-worldness and the existence of hubs are conserved over different frequency scales in functional MRI and electrophysiological data.

  • Convergent experimental and computational data suggest that there is interdependence in the organization of structural and functional networks. The topology, synchronizability and other dynamic properties of functional networks are strongly affected by small-world and other metrics of structural connectivity. Conversely, over a slower timescale the dynamics can modulate structural network topology.

  • Neuropsychiatric disorders can be thought of as dysconnectivity syndromes, and graph theory has already been used to quantify abnormality of structural and functional network properties in schizophrenia, Alzheimer's disease and other disorders. Graph theory can help us to understand the vulnerability of brain networks to lesions and could in future be used to provide markers of genetic risk for disorders or to measure therapeutic effects of drug treatments on functional networks.

  • The network organization of the brain, as it is beginning to be revealed by graph theory, is compatible with the hypothesis that the brain, perhaps in common with other complex networks, has evolved both to maximize the efficiency of information transfer and to minimize connection cost, at all scales of space and time. Key issues for future work include clarifying the relationship between the brain's network properties and its emergent cognitive behaviours in health and disease.

Abstract

Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks — such as small-world topology, highly connected hubs and modularity — both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational modelling of structural and functional brain networks.
Figure 2: Cellular and whole-brain networks demonstrate consistent topological features.
Figure 3: Disease-related disorganization of brain anatomical networks derived from structural MRI data.

Similar content being viewed by others

References

  1. Cajal, S. R. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  2. Swanson, L. W. Brain Architecture (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  3. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

    CAS  PubMed  Google Scholar 

  4. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    PubMed  Google Scholar 

  5. Bressler, S. L. Large-scale cortical networks and cognition. Brain Res. Brain Res. Rev. 20, 288–304 (1995).

    CAS  PubMed  Google Scholar 

  6. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    PubMed  Google Scholar 

  7. McIntosh, A. R. Towards a network theory of cognition. Neural Netw. 13, 861–870 (2000).

    CAS  PubMed  Google Scholar 

  8. Friston, K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci. 25, 221–250 (2002).

    CAS  PubMed  Google Scholar 

  9. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, New York, 2006).

    Google Scholar 

  10. Strogatz, S. H. Exploring complex networks. Nature 410, 268–277 (2001).

    CAS  PubMed  Google Scholar 

  11. Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). A scholarly review of the early literature on the physics of complex networks, with an emphasis on various types of scale-free and small-world connectivity.

    Google Scholar 

  12. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Google Scholar 

  13. Börner, K., Sanyal, S. & Vespignani, A. Network science. Annu. Rev. Inform. Sci. Technol. 41, 537–607 (2007).

    Google Scholar 

  14. Tononi, G., Sporns, O. & Edelman, G. M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl Acad. Sci. USA 91, 5033–5037 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Amaral, L. A. N., Scala, A., Barthelemy, M. & Stanley, H. E. Classes of small-world networks. Proc. Natl Acad. Sci. USA 97, 11149–11152 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Amaral, L. A. N. & Ottino, J. M. Complex networks. Augmenting the framework for the study of complex systems. Eur. Phys. J. B 38, 147–162 (2004).

    CAS  Google Scholar 

  17. Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    PubMed  Google Scholar 

  18. Watts, D. J. & Strogatz, S. H. Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998). This seminal paper on small-world networks demonstrated their ubiquitous occurrence in natural, social and technological systems.

    Article  CAS  PubMed  Google Scholar 

  19. Sporns, O., Chialvo, D., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).

    PubMed  Google Scholar 

  20. Bassett, D. S. & Bullmore, E. T. Small world brain networks. Neuroscientist 12, 512–523 (2006).

    PubMed  Google Scholar 

  21. Reijneveld, J. C., Ponten, S. C., Berendse, H. W. & Stam, C. J. The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118, 2317–2331 (2007).

    PubMed  Google Scholar 

  22. Stam, C. J. & Reijneveld, J. C. Graph theoretical analysis of complex networks in the brain. Nonlin. Biomed. Phys. 1, 3 (2007).

    Google Scholar 

  23. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ravasz, E. & Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 026112 (2003).

    PubMed  Google Scholar 

  25. Barthélemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 38, 163–168 (2004).

    Google Scholar 

  26. Guimerà, R. & Amaral, L. A. N. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    PubMed  PubMed Central  Google Scholar 

  27. Guimerà, R., Mossa, S., Turtschi, A. & Amaral, L. A. The worldwide air transportation network: anomalous centrality, community structure and cities' global roles. Proc. Natl Acad. Sci. USA 102, 7794–7799 (2005).

    PubMed  PubMed Central  Google Scholar 

  28. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Laughlin, S. B. & Sejnowski, T. J. Communication in neuronal networks. Science 301, 1870–1874 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Braitenberg, V. & Schüz, A. Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, 1998).

    Google Scholar 

  31. Hellwig, B. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121 (2000).

    CAS  PubMed  Google Scholar 

  32. Averbeck, B. B. & Seo, M. The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput. Biol. 4, e1000050 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. Cherniak, C. Component placement optimization in the brain. J. Neurosci. 14, 2418–2427 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002).

    CAS  PubMed  Google Scholar 

  35. Klyachko, V. A. & Stevens, C. F. Connectivity optimization and the positioning of cortical areas. Proc. Natl Acad. Sci. USA 100, 7937–7941 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    CAS  PubMed  Google Scholar 

  37. Silberberg, G., Grillner, S., LeBeau, F. E. N., Maex, R. & Markram, H. Synaptic pathways in neural microcircuits. Trends Neurosci. 28, 541–551 (2005).

    CAS  PubMed  Google Scholar 

  38. Humphries, M. D., Gurney, K. & Prescott, T. J. The brainstem reticular formation is a small-world, not scale-free, network. Proc. Biol. Sci. 273, 503–511 (2006).

    CAS  PubMed  Google Scholar 

  39. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005). Presented recordings from multiple cortical neurons that revealed the small-world topology of cellular functional networks.

    PubMed  PubMed Central  Google Scholar 

  40. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  PubMed  Google Scholar 

  41. Lichtman, J. W., Livet, J. & Sanes, J. R. A technicolour approach to the connectome. Nature Rev. Neurosci. 9, 417–422 (2008).

    CAS  Google Scholar 

  42. Felleman, D. J. & van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  43. Scannell, J. W., Burns, G. A. P. C., Hilgetag, C. C., O'Neil, M. A. & Young, M. P. The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299 (1999).

    CAS  PubMed  Google Scholar 

  44. Sporns, O., Tononi, G. & Edelman, G. M. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Cereb. Cortex 10, 127–141 (2000). One of the first papers to describe small-world topological properties, and to investigate the relationship between topology and complex dynamics, in brain networks.

    CAS  PubMed  Google Scholar 

  45. Hilgetag, C. C., Burns, G. A., O'Neill, M. A., Scannell, J. W. & Young, M. P. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 91–110 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sporns, O. & Zwi, J. The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004).

    PubMed  Google Scholar 

  47. Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006). A comprehensive analysis of the relationship between economical wiring and small-world topology of brain networks, and its evolutionary significance.

    PubMed  PubMed Central  Google Scholar 

  48. Sporns, O. & Kötter, R. Motifs in brain networks. PLoS Biol. 2, 1910–1918 (2004).

    CAS  Google Scholar 

  49. Sporns, O., Honey, C. J. & Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2, e1049 (2007).

    PubMed  PubMed Central  Google Scholar 

  50. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comp. Biol. 1, e42 (2005). This review article argued for the fundamental importance of structural connectivity in cognitive neuroscience and proposed an effort to systematically collect data on structural connections in the human brain.

    Google Scholar 

  51. He, Y., Chen, Z. J. & Evans, A. C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007). This study was the first to derive a structural network of the human brain on the basis of correlations in cortical grey matter thickness measured using MRI.

    PubMed  Google Scholar 

  52. Wright, I. C. et al. Supra-regional brain systems and the neuropathology of schizophrenia. Cereb. Cortex 9, 366–378 (1999).

    CAS  PubMed  Google Scholar 

  53. Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J. & Evans, A. C. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex 18, 2374–2381 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. Iturria-Medina, Y. et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36, 645–660 (2007).

    CAS  PubMed  Google Scholar 

  55. Iturria-Medina, Y., Sotero, R. C., Canales-Rodriguez, E. J., Aleman-Gomez, Y. & Melie-Garcia, L. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40, 1064–1076 (2008).

    PubMed  Google Scholar 

  56. Gong, G. et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 20 Jun 2008 (doi:10.1093/cercor/bhn102).

    PubMed  PubMed Central  Google Scholar 

  57. Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G. & Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005).

    PubMed  Google Scholar 

  58. Hagmann, P. et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2, e597 (2007).

    PubMed  PubMed Central  Google Scholar 

  59. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008). This paper demonstrated the existence of modules, hubs and a structural core in the human anatomical network derived from DTI.

    PubMed  PubMed Central  Google Scholar 

  60. Parvizi, J., Van Hoesen, G. W., Buckwalter, J. & Damasio, A. Neural connections of the posteromedial cortex in the macaque. Proc. Natl Acad. Sci. USA 103, 1563–1568 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).

    PubMed  Google Scholar 

  62. Alkire, M. T., Hudetz, A. G. & Tononi, G. Consciousness and anesthesia. Science 322, 876–880 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Stephan, K. E. et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 111–126 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McIntosh, A. R. et al. Network analysis of cortical visual pathways mapped with PET. J. Neurosci. 14, 655–666 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bullmore, E. T. et al. How good is good enough in path analysis of fMRI data? Neuroimage 17, 573–582 (2002).

    PubMed  Google Scholar 

  66. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    CAS  PubMed  Google Scholar 

  67. Brovelli, A. et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl Acad. Sci. USA 101, 9849–9854 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Salvador, R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005).

    PubMed  Google Scholar 

  69. Eguíluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M. & Apkarian, A. V. Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005).

    PubMed  Google Scholar 

  70. Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. T. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006). This paper presented one of the first detailed analyses of small-world brain functional networks derived from human fMRI data.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferrarini, L. et al. Hierarchical functional modularity in the resting-state human brain. Hum. Brain Mapp. 1 Oct 2008 (doi:10.1002/hbm.20663).

    PubMed  Google Scholar 

  72. Meunier, D., Achard, S., Morcom, A. & Bullmore, E. Age-related changes in modular organization of human brain functional networks. Neuroimage 44, 715–723 (2008).

    PubMed  Google Scholar 

  73. Latora, V. & Marchiori, M. Efficient behaviour of small-world networks. Phys. Rev. Lett. 87, 198701 (2001). The first formulation of the economical small-world concept and its key parameters: topological efficiency and connection cost.

    CAS  PubMed  Google Scholar 

  74. Latora, V. & Marchiori, M. Economic small-world behavior in weighted networks. Eur. Phys. J. B 32, 249–263 (2003).

    CAS  Google Scholar 

  75. Achard, S. & Bullmore, E. T. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).

    PubMed  PubMed Central  Google Scholar 

  76. Bullmore, E. T. et al. Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23, S234–S249 (2004).

    PubMed  Google Scholar 

  77. Fair, D. A. et al. Development of distinct cortical networks through segregation and integration. Proc. Natl Acad. Sci. USA 104, 13507–13512 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Stam, C. J. & van Dijk, B. W. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163, 236–251 (2002).

    Google Scholar 

  79. Stam, C. J. Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network? Neurosci. Lett. 355, 25–28 (2004).

    CAS  PubMed  Google Scholar 

  80. Micheloyannis, S. et al. The influence of ageing on complex brain networks: a graph theoretical analysis. Hum. Brain Mapp. 30, 200–208 (2009).

    PubMed  Google Scholar 

  81. Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. T. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl Acad. Sci. USA 103, 19518–19523 (2006). This study provides evidence for fractal or scale-invariant small-world networks across multiple frequency ranges and for their reconfiguration during cognitive tasks.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M. & Ilmoniemi, R. J. Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21, 1370–1377 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Maxim, V. et al. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 25, 141–158 (2005).

    PubMed  Google Scholar 

  84. Achard, S., Bassett, D. S., Meyer-Lindenberg, A. & Bullmore, E. T. Fractal connectivity of long memory networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 036104 (2008).

    PubMed  Google Scholar 

  85. Schwarz, A., Gozzi, A. & Bifone, A. Community structure and modularity in networks of correlated brain activity. Magn. Reson. Imaging 26, 914–920 (2008).

    PubMed  Google Scholar 

  86. Yu, S., Huang, D., Singer, W. & Nikolic, D. A small world of neuronal synchrony. Cereb. Cortex 18, 2891–2901 (2008). This paper was one of the first to apply graph theoretical techniques to map the topology of functionally characterized cortical neuronal circuits.

    PubMed  PubMed Central  Google Scholar 

  87. Schneidman, E., Still, S., Berry, M. J. & Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 91, 238701 (2003).

    PubMed  Google Scholar 

  88. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bettencourt, L. M., Stephens, G. J., Ham, M. I. & Gross, G. W. Functional structure of cortical neuronal networks grown in vitro. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 021915 (2007).

    PubMed  Google Scholar 

  90. Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999). This landmark paper was the first to describe the scale-free organization of many complex networks and proposed a simple growth rule for their formation.

    PubMed  Google Scholar 

  91. Van den Heuvel, M. P., Stam, C. J., Boersma, M. & Hulshoff Pol, H. E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008).

    CAS  PubMed  Google Scholar 

  92. Passingham, R. E., Stephan, K. E. & Kötter, R. The anatomical basis of functional localization in the cortex. Nature Rev. Neurosci. 3, 606–616 (2002).

    CAS  Google Scholar 

  93. Alvarez, V. A. & Sabatini, B. L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).

    CAS  PubMed  Google Scholar 

  94. Grutzendler, J., Kasthuri, N. & Gan, W.-B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  95. Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006).

    CAS  Google Scholar 

  96. Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

    CAS  PubMed  Google Scholar 

  97. Sasaki, T., Matsuki, N. & Ikegaya, Y. Metastability of active CA3 networks. J. Neurosci. 27, 517–528 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Valencia, M., Martinerie, J., Dupont, S. & Chavez, M. Dynamic small-world behaviour in functional brain networks unveiled by an event-related networks approach. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 050905 (2008).

    CAS  PubMed  Google Scholar 

  99. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001). Using quantitative metabolic and haemodynamic measures, this paper first proposed the existence of an organized pattern of resting or default-mode brain activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gusnard, D. A. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nature Rev. Neurosci. 2, 685–694 (2001).

    CAS  Google Scholar 

  101. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev. Neurosci. 8, 700–711 (2007).

    CAS  Google Scholar 

  102. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    CAS  PubMed  Google Scholar 

  103. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Koch, M. A., Norris, D. G. & Hund-Georgiadis, M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16, 241–250 (2002).

    PubMed  Google Scholar 

  105. Greicius, M., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2008).

    PubMed  PubMed Central  Google Scholar 

  106. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA (in the press).

  107. Park, C. H., Kim, S. Y., Kim, Y.-H. & Kim, K. Comparison of the small-world topology between anatomical and functional connectivity in the human brain. Physica A 387, 5958–5962 (2008).

    Google Scholar 

  108. Galán, R. F. On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS ONE 3, e2148 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007). This paper used a large-scale computational model to relate topological features of structural and functional brain networks at multiple timescales.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn. 2, 115–120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou, C., Zemanova, L., Zamora, G., Hilgetag, C. C. & Kurths, J. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97, 238103 (2006).

    PubMed  Google Scholar 

  112. Müller-Linow, M., Hilgetag, C. C. & Hütt, M.-T. Organization of excitable dynamics in hierarchical biological networks. PLoS Comput. Biol. 4, e1000190 (2008).

    PubMed  PubMed Central  Google Scholar 

  113. Kaiser, M., Görner, M. & Hilgetag, C. C. Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J. Phys. 9, 110 (2007).

    Google Scholar 

  114. Percha, B., Dzakpasu, R., Zochowski, M. & Parent, J. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 031909 (2005).

    PubMed  Google Scholar 

  115. Siri, B., Quoy, M., Delord, B., Cessac, B. & Berry, H. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. J. Physiol. (Paris) 101, 136–148 (2007).

    Google Scholar 

  116. Catani, M. & fftyche, D. H. The rises and falls of disconnection syndromes. Brain 128, 2224–2239 (2005).

    PubMed  Google Scholar 

  117. Supekar, K., Menon, V., Rubin, D., Musen, M. & Greicius, M. D. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput. Biol. 4, e1000100 (2008).

    PubMed  PubMed Central  Google Scholar 

  118. Stam, C. J., Jones, B. E., Nolte, G., Breakspear, M. & Scheltens, P. Small-world networks and functional connectivity in Alzheimer's disease. Cereb. Cortex 17, 92–99 (2007). This paper was one of the first to use graph theory to demonstrate disease-related differences in brain functional network topology.

    CAS  PubMed  Google Scholar 

  119. He, Y., Chen, Z. & Evans, A. C. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J. Neurosci. 28, 8148–8159 (2008).

    Google Scholar 

  120. Stam, C. J. et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 24 Oct 2008 (doi:10.1093/brain/awn262).

    PubMed  Google Scholar 

  121. Liu, Y. et al. Disrupted small-world networks in schizophrenia. Brain 131, 945–961 (2008).

    PubMed  Google Scholar 

  122. Micheloyannis, S. et al. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 87, 60–66 (2006).

    PubMed  Google Scholar 

  123. Rubinov, M. et al. Small-world properties of nonlinear brain activity in schizophrenia. Hum. Brain Mapp. 10 Dec 2007 (doi:10.1002/hbm.20517).

    PubMed Central  Google Scholar 

  124. Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ponten, S. C., Bartolomei, F. & Stam, C. J. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin. Neurophysiol. 118, 918–927 (2007).

    CAS  PubMed  Google Scholar 

  126. Kramer, M. A., Kolaczyk, E. D. & Kirsch, H. E. Emergent network topology at seizure onset in humans. Epilepsy Res. 79, 173–186 (2008).

    PubMed  Google Scholar 

  127. Schindler, K. A., Bialonski, S., Horstmann, M. T., Elger, C. E. & Lehnertz, K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18, 033119 (2008).

    PubMed  Google Scholar 

  128. Wang, L. et al. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 24 Jan 2008 (doi:10.1002/hbm.20530).

    CAS  PubMed Central  Google Scholar 

  129. De Vico Fallani, F. et al. Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum. Brain Mapp. 28, 1334–1346 (2007).

    PubMed  Google Scholar 

  130. Smit, D. J., Stam, C. J., Posthuma, D., Boomsma, D. I. & de Geus, E. J. Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum. Brain Mapp. 29, 1368–1378 (2008).

    PubMed  Google Scholar 

  131. Schmitt, J. E. et al. Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb. Cortex 18, 1737–1747 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sporns, O. Small-world connectivity, motif composition and complexity of fractal neuronal connections. Biosystems 85, 55–64 (2006).

    PubMed  Google Scholar 

  133. Kaiser, M., Robert, M., Andras, P. & Young, M. P. Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 25, 3185–3192 (2007).

    PubMed  Google Scholar 

  134. Honey, C. J. & Sporns, O. Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 29, 802–809 (2008).

    PubMed  PubMed Central  Google Scholar 

  135. He, B. J., Shulman, G. L., Snyder, A. Z. & Corbetta, M. The role of impaired neuronal communication in neurological disorders. Curr. Opin. Neurol. 20, 655–660 (2007).

    PubMed  Google Scholar 

  136. He, B. J. et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–918 (2007).

    CAS  PubMed  Google Scholar 

  137. Dyhrfjeld-Johnsen, J. et al. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J. Neurophysiol. 97, 1566–1587 (2007). This paper used biologically realistic computational modelling to study the effects of epileptogenic cellular changes on the topology and dynamics of functional networks in the rat hippocampus.

    PubMed  Google Scholar 

  138. Srinivas, K. V., Jain, R., Saurav, S. & Sikdar, S. K. Small-world network topology of hippocampal neuronal network is lost, in an in vivo glutamate injury model of epilepsy. Eur. J. Neurosci. 25, 3276–3286 (2007).

    PubMed  Google Scholar 

  139. Netoff, T. I., Clewley, R., Arno, S., Keck, T. & White, J. A. Epilepsy in small-world networks. J. Neurosci. 24, 8075–8083 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Honey, G. D. et al. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Brain 126, 1767–1781 (2003).

    CAS  PubMed  Google Scholar 

  141. Schwarz, A. J., Gozzi, A., Reese, T., Heidbreder, C. A. & Bifone, A. Pharmacological modulation of functional connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by selective dopamine D3 receptor antagonist SB277011A. Magn. Reson. Imaging 25, 277811–277820 (2007).

    Google Scholar 

  142. Stoffers, D., Bosboom, J. L., Wolters, E. Ch., Stam, C. J. & Berendse, H. W. Dopaminergc modulation of cortico-cortical functional connectivity in Parkinson's disease: an MEG study. Exp. Neurol. 213, 191–195 (2008).

    CAS  PubMed  Google Scholar 

  143. Bressler, S. & Kelso, J. A. S. Cortical coordination dynamics and cognition. Trends Cogn. Sci. 5, 26–36 (2001).

    PubMed  Google Scholar 

  144. Barahona, M. & Pecora, L. M. Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002).

    PubMed  Google Scholar 

  145. Shin, C. W. & Kim, S. Self-organized criticality and scale-free properties in emergent functional neural networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 045101 (2006).

    PubMed  Google Scholar 

  146. Kitzbichler, M., Smith, M., Sorensen, C. & Bullmore, E. Broadband criticality of human brain network synchronization. PLoS Comput. Biol. (in the press).

  147. Wang, J. et al. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum. Brain Mapp. 22 Jul 2008 (doi:10.1002/hbm.20623).

    PubMed  Google Scholar 

  148. Roebroeck, A., Formisano, E. & Goebel, R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25, 230–242 (2005).

    PubMed  Google Scholar 

  149. Bressler, S. L., Tang, W., Sylvester, C., Shulman, G. & Corbetta, M. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 28, 10056–10061 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    CAS  PubMed  Google Scholar 

  151. Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977).

    Google Scholar 

  152. Erdös, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960).

    Google Scholar 

  153. Milgram, S. The small world problem. Psychol. Today 1, 61–67 (1967).

    Google Scholar 

  154. Humphries, M. D. & Gurney, K. Network “small-world-ness”: a quantitative method for determining canonical network equivalence. PLoS ONE 3, e0002051 (2008).

    PubMed  Google Scholar 

  155. Harary, F. Graph Theory (Perseus, Reading, Massachusetts, 1969).

    Google Scholar 

  156. Euler, L. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 8, 128–140 (1736).

    Google Scholar 

  157. Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications (Cambridge Univ. Press, 1994).

    Google Scholar 

  158. Sporns, O. in Diffusion MRI: from Quantitative Measurement to In-Vivo Neuroanatomy (eds Johansen-Berg, H. & Behrens, T.) 309–332 (Academic, London, 2009).

    Google Scholar 

Download references

Acknowledgements

E.B. was supported by a Human Brain Project grant from the National Institute of Mental Health and the National Institute of Biomedical Imaging & Bioengineering. The Behavioural & Clinical Neurosciences Institute in the University of Cambridge is supported by the Wellcome Trust and the Medical Research Council (UK). O.S. was supported by the JS McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Bullmore.

Ethics declarations

Competing interests

Ed Bullmore is employed part-time by GlaxoSmithKline (GSK). He is a shareholder in GSK and the Brain Resource Company.

Related links

Related links

FURTHER INFORMATION

Ed Bullmore's homepage

Olaf Sporns' homepage

Brain Connectivity Toolbox

BrainwaveR Toolbox

Glossary

Graph theory

A branch of mathematics that deals with the formal description and analysis of graphs. A graph is defined simply as a set of nodes (vertices) linked by connections (edges), and may be directed or undirected. When describing a real-world system, a graph provides an abstract representation of the system's elements and their interactions.

Complex network

An informal description of a network with certain topological features, such as high clustering, small-worldness, the presence of high-degree nodes or hubs, assortativity, modularity or hierarchy, that are not typical of random graphs or regular lattices. Most real-life networks are complex by this definition, and analysis of complex networks therefore forms an important methodological tool for systems biology.

Adjacency matrix

An adjacency matrix indicates the number of edges between each pair of nodes in a graph. For most brain networks, the adjacency matrix is specified as binary — that is, each element is either 1 (if there is an edge between nodes) or 0 (if there is no edge). For undirected graphs the adjacency matrix is symmetrical.

Connectivity

In the brain, connectivity can be described as structural, functional or effective. Structural connectivity denotes a network of anatomical links, functional connectivity denotes the symmetrical statistical association or dependency between elements of the system, and effective connectivity denotes directed or causal relationships between elements.

Microcircuit

A neuronal network composed of specific cell types and synaptic connections, often arranged in a modular architecture and capable of generating functional outputs.

Connectome

The complete description of the structural connections between elements of a nervous system.

Diffusion tensor imaging

(DTI). An MRI technique that takes advantage of the restricted diffusion of water through myelinated nerve fibres in the brain to map the anatomical connectivity between brain areas.

Diffusion spectrum imaging

An MRI technique that is similar to DTI, but with the added capability of resolving multiple directions of diffusion in each voxel of white matter. This allows multiple groups of fibres at each location, including intersecting fibre pathways, to be mapped.

Cortical parcellation

A division of the continuous cortical sheet into discrete areas or regions; Brodmann's division of the cortex into areas defined by their cytoarchitectonic criteria is the most famous but not the only parcellation scheme.

Neuronographic measurements

Recordings of epileptiform electrical activity at specific sites in the cortex following topical application of a pro-convulsive drug to a distant cortical site; rapid propagation of electrical activity from stimulation to recording sites implies that the sites are anatomically connected.

Functional MRI

(fMRI). The detection of changes in regional brain activity through their effects on blood flow and blood oxygenation (which, in turn, affect magnetic susceptibility and tissue contrast in magnetic resonance images).

Electroencephalography

(EEG). A technique used to measure neural activity by monitoring electrical signals from the brain, usually through scalp electrodes. EEG has good temporal resolution but relatively poor spatial resolution.

Magnetoencephalography

(MEG). A method of measuring brain activity by detecting minute perturbations in the extracranial magnetic field that are generated by the electrical activity of neuronal populations.

Multielectrode array

(MEA). A technique for simultaneously measuring the electrical activity of local neuronal populations or single neurons, usually in tissue slices or cell cultures in vitro.

Association matrix

A matrix that represents the strength of the association between each pair of nodes in a graph. Association between nodes can be quantified by many continuously variable metrics, such as correlation or mutual information. Either functional or effective connectivity measures can be used to construct an association matrix.

Blood oxygen level-dependent (BOLD) signals

Changes in magnetic susceptibility and MRI tissue contrast that are indirectly indicative of underlying changes in spontaneous or experimentally controlled brain activation.

Default-mode network

A set of brain regions, including medial frontal and posterior cingulate areas of the cortex, that are consistently deactivated during the performance of diverse cognitive tasks.

Metastable dynamics

Transitions between marginally stable network states; these transitions can occur spontaneously or as a result of weak external perturbations.

Resting state

A cognitive state in which a subject is quietly awake and alert but does not engage in or attend to a specific cognitive or behavioural task.

Assortativity

A measure of the tendency for nodes to be connected to other nodes of the same or similar degree.

Endophenotype

A quantifiable biological marker of the genetic risk for a neuropsychiatric disorder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10, 186–198 (2009). https://doi.org/10.1038/nrn2575

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing