Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Dopamine D1 receptor protein is elevated in nucleus accumbens of human, chronic methamphetamine users

Abstract

Animal data have long suggested that an adaptive upregulation of nucleus accumbens dopamine D1 receptor function might underlie part of the dependency on drugs of abuse. We measured by quantitative immunoblotting protein levels of dopamine D1 and, for comparison, D2 receptors in brain of chronic users of methamphetamine, cocaine, and heroin. As compared with the controls, brain dopamine D1 receptor concentrations were selectively increased (by 44%) in the nucleus accumbens of the methamphetamine users, whereas a trend was observed in this brain area for reduced protein levels of the dopamine D2 receptor in all three drug groups (−25 to −37%; P < 0.05 for heroin group only). Our data support the hypothesis that aspects of the drug-dependent state in human methamphetamine users might be related to increased dopamine D1 receptor function in limbic brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Di Chiara G . The role of dopamine in drug abuse viewed from the perspective of its role in motivation Drug Alcohol Depend 1995; 38: 95–137

    Article  CAS  Google Scholar 

  2. Nestler EJ, Aghajanian GK . Molecular and cellular basis of addiction Science 1997; 278: 58–63

    Article  CAS  Google Scholar 

  3. Self DW . Neural substrates of drug craving and relapse in drug addiction Ann Med 1998; 30: 379–389

    Article  CAS  Google Scholar 

  4. Higashi H, Inanaga K, Nishi S, Uchimura N . Enhancement of dopamine actions on rat nucleus accumbens neurones in vitro after methamphetamine pre-treatment J Physiol 1989; 408: 587–603

    Article  CAS  Google Scholar 

  5. Henry DJ, White FJ . Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens J Pharmacol Exp Ther 1991; 258: 882–890

    CAS  PubMed  Google Scholar 

  6. Terwilliger RZ, Beitner-Johnson D, Sevarino E, Crain SM, Nestler EJ . A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function Brain Res 1991; 548: 100–110

    Article  CAS  Google Scholar 

  7. Self DW, McClenahan AW, Beitner-Johnson D, Terwilliger RZ, Nestler EJ . Biochemical adaptations in the mesolimbic dopamine system in response to heroin self-administration Synapse 1995; 21: 312–318

    Article  CAS  Google Scholar 

  8. Schoffelmeer AN, Voorn P, Jonkeer AJ, Wardeh G, Nestby P, Vanderschuren LJ et al. Morphine-induced increase in D-1 receptor regulated signal transduction in rat striatal neurons and its facilitation by glucocorticoid receptor activation: possible role in behavioral sensitization Neurochem Res 1996; 21: 1417–1423

    Article  CAS  Google Scholar 

  9. Unterwald EM, Fillmore J, Kreek MJ . Chronic repeated cocaine administration increases dopamine D1 receptor-mediated signal transduction Eur J Pharmacol 1996; 318: 31–35

    Article  CAS  Google Scholar 

  10. Self DW, Barnhart WJ, Lehman DA, Nestler EJ . Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists Science 1996; 271: 1586–1589

    Article  CAS  Google Scholar 

  11. Hall H, Farde L, Sedvall G . Human dopamine receptor subtypes—in vitro binding analysis using 3H-SCH 23390 and 3H-raclopride J Neural Transm 1988; 73: 7–21

    Article  CAS  Google Scholar 

  12. Dean B, Pavey G, Opeskin K . [3H]Raclopride binding to brain tissue from subjects with schizophrenia: methodological aspects Neuropharmacology 1997; 36: 779–786

    Article  CAS  Google Scholar 

  13. Ng GYK, O'Dowd BF, Lee SP, Chung HT, Brann MR, Seeman P et al. Dopamine D2 receptor dimers and receptor-blocking peptides Biochem Biophys Res Comm 1996; 227: 200–204

    Article  CAS  Google Scholar 

  14. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users Nature Med 1996; 2: 699–703

    Article  CAS  Google Scholar 

  15. Wilson JM, Levey AI, Bergeron C, Kalasinsky K, Ang L, Peretti F et al. Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users Ann Neurol 1996; 40: 428–439

    Article  CAS  Google Scholar 

  16. Kish SJ, Kalasinsky K, Furukawa Y, Guttman M, Ang L, Adams V et al. Brain choline acetyltransferase activity in chronic human users of cocaine, methamphetamine, and heroin Mol Psychiatry 1999; 4: 26–32

    Article  CAS  Google Scholar 

  17. Riley HA . An Atlas of the Basal Ganglia, Brainstem, and Spinal Cord Hafner: New York 1960

    Google Scholar 

  18. Kish SJ, Shannak K, Hornykiewicz O . Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease New Engl J Med 1988; 318: 876–880

    Article  CAS  Google Scholar 

  19. McLeman ER, Warsh JJ, Ang L, Li PP, Kalasinsky KS, Ross BM et al. The human nucleus accumbens is highly susceptible to G protein down-regulation by methamphetamine and heroin J Neurochem 2000; 74: 2120–2126

    Article  CAS  Google Scholar 

  20. Meredith GE, Pattiselanno A, Groenwegen HJ, Haber SN . Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k J Comp Neurol 1996; 365: 628–639

    Article  CAS  Google Scholar 

  21. Voorn P, Brady LS, Berendse HW, Richfield EK . Densitometrical analysis of opioid receptor ligand binding in the human striatum—I. Distribution of μ opioid receptor defines shell and core of the ventral striatum Neuroscience 1996; 75: 777–792

    Article  CAS  Google Scholar 

  22. Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies Proc Natl Acad Sci (USA) 1993; 90: 8861–8865

    Article  CAS  Google Scholar 

  23. Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS . D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex Proc Natl Acad Sci (USA) 1994; 91: 5720–5724

    Article  CAS  Google Scholar 

  24. Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents J Neurosci 1995; 15: 5222–5237

    Article  CAS  Google Scholar 

  25. Maltais S, Labbé L, Falardeau P . Characterization of a polyclonal anti-D2 dopamine receptor antibody to D2R third intracellular loop fusion protein Soc Neurosci USA Abstr 1995; 21: 365

    Google Scholar 

  26. Maltais S, Côté S, Drolet G, Falardeau P . Cellular colocalization of dopamine D1 mRNA and D2 receptor in rat brain using a D2dopamine receptor specific polyclonal antibody Prog Neuro-Psychopharmacol Biol Psychiat 2000; 24: (in press)

    Article  CAS  Google Scholar 

  27. Turjanski N, Weeks R, Dolan R, Harding AE, Brooks DJ . Striatal D1 and D2 receptor binding in patients with Huntington's disease and other choreas. A PET study Brain 1995; 118: 689–696

    Article  Google Scholar 

  28. Ginovart N, Lundin A, Farde L, Halldin C, Backman L, Swahn CG et al. PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington's disease Brain 1997; 120: 503–514

    Article  Google Scholar 

  29. Antonini A, Leenders KL, Eidelberg D . [11C]raclopride-PET studies of the Huntington's disease rate of progression: relevance of the trinucleotide repeat length Ann Neurol 1998; 43: 253–255

    Article  CAS  Google Scholar 

  30. Hall H, Sedvall G, Magnusson O, Kopp J, Hallidin C, Farde L . Distribution of D1- and D2- dopamine receptors, and dopamine and its metabolites in the human brain Neuropsychopharmacology 1994; 11: 245–256

    Article  CAS  Google Scholar 

  31. Meador-Woodruff JH, Little KY, Damask SP, Mansour A, Watson SJ . Effects of cocaine on dopamine receptor gene expression: a study in the postmortem human brain Biol Psychiatry 1993; 34: 348–355

    Article  CAS  Google Scholar 

  32. Volkow ND, Fowler JS, Wang G-J, Hitzemann R, Logan J, Schlyer DJ et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers Synapse 1993; 14: 169–177

    Article  CAS  Google Scholar 

  33. Staley JK, Wetli CV, Ruttneber AJ, Heam WL, Mash DC . Altered dopaminergic synaptic markers in cocaine psychosis and sudden death NIDA Res Monogr 1995; 153: 491

    Google Scholar 

  34. Wang G-J, Volkow ND, Fowler JS, Logan J, Abumrad NN, Hitzemann RJ et al. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal Neuropsychopharmacology 1997; 16: 174–182

    Article  CAS  Google Scholar 

  35. Robinson TE, Becker JB . Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis Brain Res 1986; 396: 157–198

    Article  CAS  Google Scholar 

  36. Barnett JV, Segal DS, Kuczenski R . Repeated amphetamine pretreatment alters the responsiveness of striatal dopamine-stimulated adenylate cyclase to amphetamine-induced desensitization J Pharmacol Exp Ther 1987; 242: 40–47

    CAS  PubMed  Google Scholar 

  37. Nonaka R, Moroji T . Effects of chronic methamphetamine treatment on the binding parameters of [3H]SCH 23390, a selective D1-dopamine receptor ligand, in the rat brain Neurosci Lett 1990; 120: 109–112

    Article  CAS  Google Scholar 

  38. Ujike H, Akiyama K, Nishikawa H, Onoue T, Otsuki S . Lasting increase in D1 dopamine receptors in the lateral part of the substantia nigra pars reticulata after subchronic methamphetamine administration Brain Res 1991; 540: 159–163

    Article  CAS  Google Scholar 

  39. Bonhomme N, Cador M, Stinus L, Le Moal M, Spampinato U . Short and long-term changes in dopamine and serotonin receptor binding sites in amphetamine-sensitized rats: a quantitative autoradiographic study Brain Res 1995; 675: 215–223

    Article  CAS  Google Scholar 

  40. Susuki H, Shishido T, Watanabe Y, Abe H, Shiragata M, Honda K et al. Changes of behavior and monoamine metabolites in the rat brain after repeated methamphetamine administration: effects of duration of repeated administration Prog Neuropsychopharmacol Biol Psychiatry 1997; 21: 359–369

    Article  Google Scholar 

  41. Tomic M, Joksimovic J . Psychotomimetics moderately affect dopamine receptor binding in the rat brain Neurochem Int 2000; 36: 137–142

    Article  CAS  Google Scholar 

  42. Tomic M, Slobodanka V, Joksimovic J . Acute amphetamine and/or phencyclidine effects on the dopamine receptor specific binding in the rat brain Eur Neuropsychopharmacol 1997; 7: 295–301

    Article  CAS  Google Scholar 

  43. Stefanski R, Ladenheim B, Lee SH, Cadet JL, Goldberg SR . Neuroadaptations in the dopaminergic system after active self-administration but not after passive administration of methamphetamine Eur J Pharmacol 1999; 371: 123–135

    Article  CAS  Google Scholar 

  44. McCabe RT, Hanson GR, Dawson TM, Wamsley JK, Gibb JW . Methamphetamine-induced reduction in D1 and D2 dopamine receptors as evidenced by autoradiography: comparison with tyrosine hydroxylase activity Neuroscience 1987; 23: 253–261

    Article  CAS  Google Scholar 

  45. Cadet JL, Ladenheim B, Hirata H . Effects of toxic doses of methamphetamine (METH) on dopamine D1 receptors in the mouse brain Brain Res 1998; 786: 240–242

    Article  CAS  Google Scholar 

  46. Staley JK, Mash DC . Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities J Neurosci 1996; 16: 6100–6106

    Article  CAS  Google Scholar 

  47. Zubieta J-K, Gorelick DA, Stauffer R, Ravert HT, Dannals RF, Frost JJ . Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving Nature Med 1996; 2: 1225–1229

    Article  CAS  Google Scholar 

  48. Staley JK, Rothman RB, Rice KC, Partilla J, Mash DC . Kappa2 opioid receptors in limbic areas of the human brain are upregulated by cocaine in fatal overdose victims J Neurosci 1997; 17: 8225–8233

    Article  CAS  Google Scholar 

  49. Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ . Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior J Neurosci 1998; 18: 1848–1859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by US NIH NIDA No. DA 07182 to SJK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Kish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worsley, J., Moszczynska, A., Falardeau, P. et al. Dopamine D1 receptor protein is elevated in nucleus accumbens of human, chronic methamphetamine users. Mol Psychiatry 5, 664–672 (2000). https://doi.org/10.1038/sj.mp.4000760

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000760

Keywords

This article is cited by

Search

Quick links