Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments

Abstract

Glutamate and γ-amino butyric acid (GABA) systems are emerging as targets for development of medications for mood disorders. There is increasing preclinical and clinical evidence that antidepressant drugs directly or indirectly reduce N-methyl-D-aspartate glutamate receptor function. Drugs that reduce glutamatergic activity or glutamate receptor-related signal transduction may also have antimanic effects. Recent studies employing magnetic resonance spectroscopy also suggest that unipolar, but not bipolar, depression is associated with reductions in cortical GABA levels. Antidepressant and mood-stabilizing treatments also appear to raise cortical GABA levels and to ameliorate GABA deficits in patients with mood disorders. The preponderance of available evidence suggests that glutamatergic and GABAergic modulation may be an important property of available antidepressant and mood-stabilizing agents. Future research will be needed to develop and evaluate new agents with specific glutamate and GABA receptor targets in the treatment of mood disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Delgado PL . Depression: the case for a monoamine deficiency J Clin Psychiatry 2000 61 (Suppl 6): 7–11

    Google Scholar 

  2. Hirschfeld RM . History and evolution of the monoamine hypothesis of depression J Clin Psychiatry 2000 61 (Suppl 6): 4–6

    Google Scholar 

  3. Berman RM, Krystal JH, Charney DS . Mechanism of action of antidepressants: monoamine hypotheses and beyond In: Watson SJ (ed) Biology of Schizophrenia and Affective Disease American Psychiatric Press: Washington, DC 1996 pp 295–368

    Google Scholar 

  4. Duman RS, Malberg J, Thome J . Neural plasticity to stress and antidepressant treatment Biol Psychiatry 1999 46: 1181–1191

    Article  CAS  PubMed  Google Scholar 

  5. Ikonomov OC, Manji HK . Molecular mechanisms underlying mood stabilization in manic-depressive illness: the phenotype challenge Am J Psychiatry 1999 156: 1506–1514

    Article  CAS  PubMed  Google Scholar 

  6. Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R . Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression Pharmacopsychiatry 1996 29: 23–26

    Article  CAS  PubMed  Google Scholar 

  7. Sanacora G, Mason GF, Krystal JH . Impairment of GABAergic transmission in depression: new insights from neuroimaging studies Crit Rev Neurobiol 2000 14: 23–45

    Article  CAS  PubMed  Google Scholar 

  8. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME . A functional anatomical study of unipolar depression J Neurosci 1992 12: 3628–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW . Hippocampal atrophy in recurrent major depression Proc Natl Acad Sci U S A 1996 93: 3908–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS . Hippocampal volume reduction in major depression Am J Psychiatry 2000 157: 115–118

    Article  CAS  PubMed  Google Scholar 

  11. Steffens DC, Byrum CE, McQuoid DR et al. Hippocampal volume in geriatric depression Biol Psychiatry 2000 48: 301–309

    Article  CAS  PubMed  Google Scholar 

  12. Robinson RG, Chemerinski E, Jorge R . Pathophysiology of secondary depressions in the elderly J Geriatr Psychiatry Neurol 1999 12: 128–136

    Article  CAS  PubMed  Google Scholar 

  13. Drevets WC, Price JL, Simpson JR Jr et al. Subgenual prefrontal cortex abnormalities in mood disorders Nature 1997 386: 824–827

    Article  CAS  PubMed  Google Scholar 

  14. Ongur D, Drevets WC, Price JL . Glial reduction in the subgenual prefrontal cortex in mood disorders Proc Nalt Acad Sci U S A 1998 95: 13290–13295

    Article  CAS  Google Scholar 

  15. Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression Biol Psychiatry 1999 45: 1085–1098

    Article  CAS  PubMed  Google Scholar 

  16. Malandro MS, Kilberg MS . Molecular biology of mammalian amino acid transporters Ann Rev Biochem 1996 65: 305–336

    Article  CAS  PubMed  Google Scholar 

  17. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG . Energy on demand Science 1999 283: 496–497

    Article  CAS  PubMed  Google Scholar 

  18. During MJ, Spencer DD . Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain Lancet 1993 341: 1607–1610

    Article  CAS  PubMed  Google Scholar 

  19. Drevets WC . Prefrontal cortical-amygdalar metabolism in major depression Ann N Y Acad Sci 1999 877: 614–637

    Article  CAS  PubMed  Google Scholar 

  20. Mayberg HS, Liotti M, Brannan SK et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness Am J Psychiatry 1999 156: 675–682

    CAS  PubMed  Google Scholar 

  21. Blumberg HP, Stern E, Martinez D et al. Increased anterior cingulate and caudate activity in bipolar mania Biol Psychiatry 2000 48: 1045–1052

    Article  CAS  PubMed  Google Scholar 

  22. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH . D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors J Neurosci 1997 17: 1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sapolsky RM . Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders Arch Gen Psychiatry 2000 57: 925–935

    Article  CAS  PubMed  Google Scholar 

  24. Cappiello A, Charney DS, Berman R et al. NMDA receptor function in major depression Biol Psychiatry 1997 41: 45S

    Google Scholar 

  25. Nowak G, Ordway GA, Paul IA . Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims Brain Res 1995 675: 157–164

    Article  CAS  PubMed  Google Scholar 

  26. Mason GF, Sanacora G, Anand A et al. Cortical GABA reduced in unipolar, but not bipolar depression Biol Psychiatry 2000 47: 92S

    Google Scholar 

  27. Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ . Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR J Cereb Blood Flow Metab 1995 15: 12–25

    Article  CAS  PubMed  Google Scholar 

  28. Shen J, Petersen KF, Behar KL et al. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR Proc Nat Acad Sci U S A 1999 96: 8235–8240

    Article  CAS  Google Scholar 

  29. Mason GF, Haga K, Appel M et al. Measuring cortical GABA levels and neurotransmitter turnover with 1H-MRS and 13C-MRS Biol Psychiatry 2001 49: 148S

    Google Scholar 

  30. Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F . Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study Biol Psychiatry 2000 47: 305–313

    Article  CAS  PubMed  Google Scholar 

  31. Papp M, Moryl E . New evidence for the antidepressant activity of MK-801, a non-competitive antagonist of NMDA receptors Pol J Pharmacol 1993 45: 549–553

    CAS  PubMed  Google Scholar 

  32. Wedzony K, Klimek V, Nowak G . Rapid down-regulation of beta-adrenergic receptors evoked by combined forced swimming test and CGP 37849—a competitive antagonist of NMDA receptors Pol J Pharmacol 1995 47: 537–540

    CAS  PubMed  Google Scholar 

  33. Wedzony K, Mackowiak M, Czyrak A, Fijal K, Michalska B . Single doses of MK-801, a non-competitive antagonist of NMDA receptors, increase the number of 5-HT1A serotonin receptors in the rat brain Brain Res 1997 756: 84–91

    Article  CAS  PubMed  Google Scholar 

  34. Pallotta M, Segieth J, Whitton PS . N-methyl-D-aspartate receptors regulate 5-HT release in the raphe nuclei and frontal cortex of freely moving rats: differential role of 5-HT1A autoreceptors Brain Res 1998 783: 173–178

    Article  CAS  PubMed  Google Scholar 

  35. Lejeune F, Gobert A, Rivet JM, Millan MJ . Blockade of transmission at NMDA receptors facilitates the electrical and synthetic activity of ascending serotoninergic neurones Brain Res 1994 656: 427–431

    Article  CAS  PubMed  Google Scholar 

  36. Martin P, Carlsson ML, Hjorth S . Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats Neuroreport 1998 9: 2985–2988

    Article  CAS  PubMed  Google Scholar 

  37. Nowak G, Redmond A, McNamara M, Paul IA . Swim stress increases the potency of glycine at the N-methyl-D-aspartate receptor complex J Neurochem 1995 64: 925–927

    Article  CAS  PubMed  Google Scholar 

  38. Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ . Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents J Neurosci 1996 16: 274–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paul IA, Nowak G, Layer RT, Popik P, Skolnick P . Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments J Pharmacol Exp Ther 1994 269: 95–102

    CAS  PubMed  Google Scholar 

  40. Reynolds IJ, Miller RJ . Tricyclic antidepressants block N-methyl-D-aspartate receptors: similarities to the action of zinc Br J Pharmacol 1988 95: 95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. White G, Lovinger DM, Peoples RW, Weight FF . Inhibition of N-methyl-D-aspartate activated ion current by desmethylimipramine Brain Res 1990 537: 337–339

    Article  CAS  PubMed  Google Scholar 

  42. Crane GE . The psychotropic effect of cycloserine: a new use of an antibiotic Compr Psychiatry 1961 2: 51–59

    Article  Google Scholar 

  43. Monahan JB, Corpus VM, Hood WF, Thomas JW, Compton RP . Characterization of a [3H]glycine recognition site as a modulatory site of the N-methyl-D-aspartate receptor complex J Neurochem 1989 53: 370–375

    Article  CAS  PubMed  Google Scholar 

  44. Emmett MR, Mick SJ, Cler JA, Rao TS, Iyengar S, Wood PL . Actions of D-cycloserine at the N-methyl-D-aspartate-associated glycine receptor site in vivo Neuropharmacology 1991 30: 1167–1171

    Article  CAS  PubMed  Google Scholar 

  45. Henderson G, Johnson JW, Ascher P . Competitive antagonists and partial agonists at the glycine modulatory site of the mouse N-methyl-D-aspartate receptor J Physiol 1990 430: 189–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Priestley T, Kemp JA . Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-D-aspartic acid receptor complex Mol Pharmacol 1994 46: 1191–1196

    CAS  PubMed  Google Scholar 

  47. Crane GE . Cycloserine as an antidepressant agent Am J Psychiatry 1959 115: 1025–1026

    Article  CAS  PubMed  Google Scholar 

  48. Krystal JH, Petrakis IL, D'Souza DC, Trevisan L, Krasnicki S, Charney DS . Interactive effects of high dose intravenous glycine and oral D-cycloserine in healthy human subjects Biol Psychiatry 1997 41 (Suppl): 23S

    Google Scholar 

  49. Krystal JH, Karper LP, Seibyl JP et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses Arch Gen Psychiatry 1994 51: 199–214

    Article  CAS  PubMed  Google Scholar 

  50. Huber TJ, Dietrich DE, Emrich HM . Possible use of amantadine in depression Pharmacopsychiatry 1999 32: 47–55

    Article  CAS  PubMed  Google Scholar 

  51. Danysz W, Parsons CG, Kornhuber J, Schmidt WJ, Quack G . Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents—preclinical studies Neurosci Biobehav Rev 1997 21: 455–468

    Article  CAS  PubMed  Google Scholar 

  52. Kornhuber J, Quack G, Danysz W et al. Therapeutic brain concentration of the NMDA receptor antagonist amantadine Neuropharmacology 1995 34: 713–721

    Article  CAS  PubMed  Google Scholar 

  53. Parsons CG, Panchenko VA, Pinchenko VO, Tsyndrenko AY, Krishtal OA . Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine Eur J Neurosci 1996 8: 446–454

    Article  CAS  PubMed  Google Scholar 

  54. Vale S, Espejel MA, Dominguez JC . Amantadine in depression Lancet 1971 2: 437

    Article  CAS  PubMed  Google Scholar 

  55. Bode L, Dietrich DE, Stoyloff R, Emrich HM, Ludwig H . Amantadine and human Borna disease virus in vitro and in vivo in an infected patients with bipolar depression Lancet 1997 349: 958

    Article  Google Scholar 

  56. Rizzo M, Morselli PL . Amantadine-induced aggressiveness Br Med J 1972 3: 50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Parkes JD, Zilkha KJ, Marsden P, Baxter RC, Knill-Jones RP . Amantadine dosage in treatment of Parkinson's disease Lancet 1970 1: 1130–1133

    Article  CAS  PubMed  Google Scholar 

  58. Gortelmeyer R, Erbler H . Memantine in the treatment of mild to moderate dementia syndrome. A double-blind placebo-controlled study Arzneimittel-Forschung 1992 42: 904–913

    CAS  PubMed  Google Scholar 

  59. Ambrozi L, Danielczyk W . Treatment of impaired cerebral function in psychogeriatric patients with memantine—results of a phase II double-blind study Pharmacopsychiatry 1988 21: 144–146

    Article  CAS  PubMed  Google Scholar 

  60. Berman RM, Cappiello A, Anand A, Oren D, Charney DS, Krystal JH . Antidepressant effects of ketamine in depressed patients Biol Psychiatry 2000 47: 351–354

    Article  CAS  PubMed  Google Scholar 

  61. Blumberg HP, Leung HC, Wexler B et al. Ventral prefrontal dysfunction in bipolar disorder: an fMRI study Biol Psychiatry 2001 49: 26S

    Google Scholar 

  62. Starkstein SE, Robinson RG . Mechanism of disinhibition after brain lesions J Nerv Ment Dis 1997 185: 108–114

    Article  CAS  PubMed  Google Scholar 

  63. Knight RT, Staines WR, Swick D, Chao LL . Prefrontal cortex regulates inhibition and excitation in distributed neural networks Acta Psychologica 1999 101: 159–178

    Article  CAS  PubMed  Google Scholar 

  64. Blumberg HP, Stern E, Ricketts S et al. Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder Am J Psychiatry 1999 156: 1986–1988

    CAS  PubMed  Google Scholar 

  65. Dixon JF, Hokin LE . Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex Proc Natl Acad Sci U S A 1998 95: 8363–8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nonaka S, Hough CJ, Chuang DM . Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx Proc Natl Acad Sci U S A 1998 95: 2642–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Manji HK, Lenox RH . Ziskind–Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness Biol Psychiatry 1999 46: 1328–1351

    Article  CAS  PubMed  Google Scholar 

  68. Meldrum BS . The role of glutamate in epilepsy and other CNS disorders Neurology 1994 44 (Suppl 8): S14–23

    Google Scholar 

  69. Cunningham MO, Jones RS . The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro Neuropharmacology 2000 39: 2139–2146

    Article  CAS  PubMed  Google Scholar 

  70. Lingamaneni R, Hemmings HC Jr . Effects of anticonvulsants on veratridine- and KCl-evoked glutamate release from rat cortical synaptosomes Neurosci Lett 1999 276: 127–130

    Article  CAS  PubMed  Google Scholar 

  71. Calabresi P, Centonze D, Marfia GA, Pisani A, Bernardi G . An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons Br J Pharmacol 1999 126: 689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Waldmeier PC, Martin P, Stocklin K, Portet C, Schmutz M . Effect of carbamazepine, oxcarbazepine and lamotrigine on the increase in extracellular glutamate elicited by veratridine in rat cortex and striatum Naunyn-Schmiedebergs Arch Pharmacol 1996 354: 164–172

    Article  CAS  PubMed  Google Scholar 

  73. Waldmeier PC, Baumann PA, Wicki P, Feldtrauer JJ, Stierlin C, Schmutz M . Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters Neurology 1995 45: 1907–1913

    Article  CAS  PubMed  Google Scholar 

  74. Manji HK, Bebchuk JM, Moore GJ, Glitz D, Hasanat KA, Chen G . Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications J Clin Psychiatry 1999 60 (Suppl 2): 27–39 discussion 40–41 113–116

    Google Scholar 

  75. Jakab RL, Goldman-Rakic PS . 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites Proc Natl Acad Sci U S A 1998 95: 735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aghajanian GK, Marek GJ . Serotonin model of schizophrenia: emerging role of glutamate mechanisms Brain Res Brain Res Rev 2000 31: 302–312

    Article  CAS  PubMed  Google Scholar 

  77. Scruggs JL, Patel S, Bubser M, Deutch AY . DOI-induced activation of the cortex: dependence on 5-HT2A heteroceptors on thalamocortical glutamatergic neurons J Neurosci (Online) 2000 20: 8846–8852

    Article  CAS  Google Scholar 

  78. Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK . Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex J Pharmacol Exp Ther 2000 292: 76–87

    CAS  PubMed  Google Scholar 

  79. Marek GJ, McDougle CJ, Price LH, Seiden LS . A comparison of trazodone and fluoxetine: implications for a serotonergic mechanism of antidepressant action Psychopharmacology 1992 109: 2–11

    Article  CAS  PubMed  Google Scholar 

  80. Guille C, Sachs GS, Ghaemi SN . A naturalistic comparison of clozapine, risperidone, and olanzapine in the treatment of bipolar disorder J Clin Psychiatry 2000 61: 638–642

    Article  CAS  PubMed  Google Scholar 

  81. Keck PE Jr, McElroy SL, Strakowski SM, Soutullo CA . Antipsychotics in the treatment of mood disorders and risk of tardive dyskinesia J Clin Psychiatry 2000 61 (Suppl 4): 33–38

    Google Scholar 

  82. Grunze HC, Rainnie DG, Hasselmo ME et al. NMDA-dependent modulation of CA1 local circuit inhibition J Neurosci 1996 16: 2034–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moghaddam B, Adams B, Verma A, Daly D . Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex J Neurosci 1997 17: 2921–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moghaddam B, Adams BW . Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats Science 1998 281: 1349–1352

    Article  CAS  PubMed  Google Scholar 

  85. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R . Study of a new schizophrenomimetic drug—sernyl Arch Neurol Psychiatry 1959 81: 363–369

    Article  CAS  Google Scholar 

  86. Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D . Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers Am J Psychiatry 1997 154: 805–811

    Article  CAS  PubMed  Google Scholar 

  87. Lahti AC, Holcomb HH, Medoff DR, Tamminga CA . Ketamine activates psychosis and alters limbic blood flow in schizophrenia Neuroreport 1995 6: 869–872

    Article  CAS  PubMed  Google Scholar 

  88. Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J . Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET) Eur Neuropsychopharmacol 1997 7: 25–38

    Article  CAS  PubMed  Google Scholar 

  89. Krystal JH, Belger A, Kirino E, Gore J, McCarthy G . Ketamine effects on the cortical processing of novelty in humans assessed with fMRI Soc Neurosci Abstr 1998 24: 104.7

    Google Scholar 

  90. Anand A, Charney DS, Cappiello A, Berman RM, Oren DA, Krystal JH . Lamotrigine attenuates ketamine effects in humans: support for hyperglutamatergic effects of NMDA antagonists Arch Gen Psychiatry 2000 57: 270–276

    Article  CAS  PubMed  Google Scholar 

  91. Krupitsky EM, Burakov AM, Romanova TN et al. Attenuation of ketamine effects by nimodipine in recently detoxified ethanol dependent men: psychopharmacologic implications of the interaction of NMDA and L-type calcium channel antagonists Neuropsychopharmacology 2001 25: 936–947

    Article  CAS  PubMed  Google Scholar 

  92. Calabrese JR, Bowden CL, Sachs GS, Ascher JA, Monaghan E, Rudd GD . A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group J Clin Psychiatry 1999 60: 79–88

    Article  CAS  PubMed  Google Scholar 

  93. Newcomer JW, Farber NB, Selke G, Melson AK, Jevtovic-Todorovic V, Olney JW . Guanabenz effects on NMDA antagonist-induced mental symptoms in human Soc Neurosci Abstr 1998 24: 211.2

    Google Scholar 

  94. Giannini AJ, Pascarzi GA, Loiselle RH, Price WA, Giannini MC . Comparison of clonidine and lithium in the treatment of mania Am J Psychiatry 1986 143: 1608–1609

    Article  CAS  PubMed  Google Scholar 

  95. Zubenko GS, Cohen BM, Lipinski JF Jr, Jonas JM . Clonidine in the treatment of mania and mixed bipolar disorder Am J Psychiatry 1984 141: 1617–1618

    Article  CAS  PubMed  Google Scholar 

  96. Lahti AC, Weiler MA, Parwani A et al. Blockade of ketamine-induced psychosis with olanzepine Schizophr Res 1999 36: 310

    Google Scholar 

  97. Vollenweider FX, Bachle D, Umbricht D, Geyer M, Hell D . Sertindole reduces S-ketamine induced attentional deficits in healthy volunteers Biol Psychiatry 1999 100S

  98. Krystal JH, Karper LP, Bennett A et al. Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans Psychopharmacology 1998 135: 213–229

    Article  CAS  PubMed  Google Scholar 

  99. Bovill JG, Clarke RSJ, Dundee JW, Pandit SK, Moore J . Effect of premedicants and supplements on ketamine anesthesia Br J Anaesth 1971 43: 600–608

    Article  CAS  PubMed  Google Scholar 

  100. Bradwejn J, Shriqui C, Koszycki D, Meterissian G . Double-blind comparison of the effects of clonazepam and lorazepam in acute mania J Clin Psychopharmacol 1990 10: 403–408

    Article  CAS  PubMed  Google Scholar 

  101. Lenox RH, Newhouse PA, Creelman WL, Whitaker TM . Adjunctive treatment of manic agitation with lorazepam versus haloperidol: a double-blind study J Clin Psychiatry 1992 53: 47–52

    CAS  PubMed  Google Scholar 

  102. Petty F . GABA and mood disorders: a brief review and hypothesis J Affect Disord 1995 34: 275–281

    Article  CAS  PubMed  Google Scholar 

  103. Roy A, DeJong J, Lamparski D, George T, Linnoila M . Depression among alcoholics. Relationship to clinical and cerebrospinal fluid variables Arch Gen Psychiatry 1991 48: 428–432

    Article  CAS  PubMed  Google Scholar 

  104. Rutherford LC, DeWan A, Lauer HM, Turrigiano GG . Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures J Neurosci 1997 17: 4527–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vaidya VA, Terwilliger RM, Duman RS . Role of 5-HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus Neurosci Lett 1999 262: 1–4

    Article  CAS  PubMed  Google Scholar 

  106. Chen RW, Chuang DM . Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity J Biol Chem 1999 274: 6039–6042

    Article  CAS  PubMed  Google Scholar 

  107. Mora A, Gonzalez-Polo RA, Fuentes JM, Soler G, Centeno F . Different mechanisms of protection against apoptosis by valproate and Li+ Eur J Biochem 1999 266: 886–891

    Article  CAS  PubMed  Google Scholar 

  108. Rothman DL, Petroff OA, Behar KL, Mattson RH . Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo Proc Natl Acad Sci U S A 1993 90: 5662–5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Petroff OA, Rothman DL . Measuring human brain GABA in vivo: effects of GABA-transaminase inhibition with vigabatrin Mol Neurobiol 1998 16: 97–121

    Article  CAS  PubMed  Google Scholar 

  110. Sanacora G, Mason GF, Rothman DL et al. Reduced cortical GABA levels in depressed patients determined by 1H-magnetic resonance spectroscopy Arch Gen Psychiatry 1999 56: 1043–1047

    Article  CAS  PubMed  Google Scholar 

  111. Goddard AW, Mason GF, Rothman DL et al. Reduction in cortical GABA levels in panic disorder assessed using [1H] magneticresonance spectroscopy Arch Gen Psychiatry 2001 58: 556–561

    Article  CAS  PubMed  Google Scholar 

  112. Foley DL, Neale MC, Kendler KS . Reliability of a lifetime history of major depression: implications for heritability and co-morbidity Psychol Med 1998 28: 857–870

    Article  CAS  PubMed  Google Scholar 

  113. Weissman MM, Wickramaratne P, Adams PB et al. The relationship between panic disorder and major depression. A new family study Arch Gen Psychiatry 1993 50: 767–780

    Article  CAS  PubMed  Google Scholar 

  114. Epperson CN, Mason G, Rothman DR, Sanacora G, Krystal JH . GABA dysregulation in premenstrual dysphoric disorder Soc Neurosci Abstr 1999 25: 2227

    Google Scholar 

  115. Monteleone P, Luisi S, Tonetti A et al. Allopregnanolone concentrations and premenstrual syndrome Eur J Endocrinol 2000 142: 269–273

    Article  CAS  PubMed  Google Scholar 

  116. Bicikova M, Dibbelt L, Hill M, Hampl R, Starka L . Allopregnanolone in women with premenstrual syndrome Horm Metab Res 1998 30: 227–230

    Article  CAS  PubMed  Google Scholar 

  117. Rapkin AJ, Morgan M, Goldman L, Brann DW, Simone D, Mahesh VB . Progesterone metabolite allopregnanolone in women with premenstrual syndrome Obstet Gynecol 1997 90: 709–714

    Article  CAS  PubMed  Google Scholar 

  118. Schmidt PJ, Purdy RH, Moore PH Jr, Paul SM, Rubinow DR . Circulating levels of anxiolytic steroids in the luteal phase in women with premenstrual syndrome and in control subjects J Clin Endocrinol Metab 1994 79: 1256–1260

    CAS  PubMed  Google Scholar 

  119. Petty F, Sherman AD . GABAergic modulation of learned helplessness Pharmacol Biochem Behav 1981 15: 567–570

    Article  CAS  PubMed  Google Scholar 

  120. Lloyd KG, Zivkovic B, Scatton B, Morselli PL, Bartholini G . The gabaergic hypothesis of depression Prog Neuropsychopharmacol Biol Psychiatry 1989 13: 341–351

    Article  CAS  PubMed  Google Scholar 

  121. Sackeim HA, Decina P, Prohovnik I, Malitz S, Resor SR . Anticonvulsant and antidepressant properties of electroconvulsive therapy: a proposed mechanism of action Biol Psychiatry 1983 18: 1301–1310

    CAS  PubMed  Google Scholar 

  122. Grahame-Smith DG . The neuropharmacological effects of electroconvulsive shock and their relationship to the therapeutic effect of electroconvulsive therapy in depression Adv Biochem Psychopharmacol 1984 39: 327–343

    CAS  PubMed  Google Scholar 

  123. Green AR, Vincent ND . The effect of repeated electroconvulsive shock on GABA synthesis and release in regions of rat brain Br J Pharmacol 1987 92: 19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sanacora G, Mason GF, Rothman DL, Berman RM, Charney DS, Krystal JH . ECT effects on cortical GABA levels as determined by 1H-MRS. Scientific Abstracts from the 37th Annual Meeting of the American College of Neuropsychopahrmacology, Las Croabas, Puerto Rico 1998 p 200

  125. Sanacora G, Mason GF, Rothman DL, Berman RM, Zimolo Z, Krystal JH . Cortical GABA concentrations are increased in depressed patients following treatment with selective serotonin reuptake inhibitors. Scientific Abstracts from the 39th Annual Meeting of the American College of Neuropsychopharmacology, San Juan, PR 2000 p 200

  126. Petroff OA, Rothman DL, Behar KL, Mattson RH . Low brain GABA level is associated with poor seizure control Ann Neurol 1996 40: 908–911

    Article  CAS  PubMed  Google Scholar 

  127. Petroff OA, Rothman DL, Behar KL, Collins TL, Mattson RH . Human brain GABA levels rise rapidly after initiation of vigabatrin therapy Neurology 1996 47: 1567–1571

    Article  CAS  PubMed  Google Scholar 

  128. Petroff OA, Rothman DL, Behar KL, Lamoureux D, Mattson RH . The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy Ann Neurol 1996 39: 95–99

    Article  CAS  PubMed  Google Scholar 

  129. Petroff OA, Hyder F, Mattson RH, Rothman DL . Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy Neurology 1999 52: 473–478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Krystal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krystal, J., Sanacora, G., Blumberg, H. et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 7 (Suppl 1), S71–S80 (2002). https://doi.org/10.1038/sj.mp.4001021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001021

Keywords

This article is cited by

Search

Quick links