Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder

Abstract

Major depressive disorder is one of the most common and devastating psychiatric disorders. To identify candidate mechanisms for major depressive disorder, we compared gene expression in the temporal cortex from 12 patients with major depressive disorder and 14 matched controls using Affymetrix HgU95A microarrays. Significant expression changes were revealed in families of genes involved in neurodevelopment, signal transduction and cell communication. Among these, the expression of 17 genes related to oligodendrocyte function was significantly (P<0.05, fold change>1.4) decreased in patients with major depressive disorder. Eight of these 17 genes encode structural components of myelin (CNP, MAG, MAL, MOG, MOBP, PMP22, PLLP, PLP1). Five other genes encode enzymes involved in the synthesis of myelin constituents (ASPA, UGT8), or are essential in regulation of myelin formation (ENPP2, EDG2, TF, KLK6). One gene, that is, SOX10, encodes a transcription factor regulating other myelination-related genes. OLIG2 is a transcription factor present exclusively in oligodendrocytes and oligodendrocyte precursors. Another gene, ERBB3, is involved in oligodendrocyte differentiation. In addition to myelination-related genes, there were significant changes in multiple genes involved in axonal growth/synaptic function. These findings suggest that major depressive disorder may be associated with changes in cell communication and signal transduction mechanisms that contribute to abnormalities in oligodendroglia and synaptic function. Taken together with other studies, these findings indicate that major depressive disorder may share common oligodendroglial abnormalities with schizophrenia and bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Berrettini WH . Are schizophrenic and bipolar disorders related A review of family and molecular studies. Biol Psychiatry 2000; 48: 531–538.

    Article  CAS  Google Scholar 

  2. Curtis VA, van Os J, Murray RM . The Kraepelinian dichotomy: evidence from developmental and neuroimaging studies. J Neuropsychiatry Clin Neurosci 2000; 12: 398–405.

    Article  CAS  Google Scholar 

  3. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  Google Scholar 

  4. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  5. Hemby SE, Ginsberg SD, Brunk B, Arnold SE, Trojanowski JQ, Eberwine JH . Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch Gen Psychiatry 2002; 59: 631–640.

    Article  CAS  Google Scholar 

  6. Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P . Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 2002; 22: 2718–2729.

    Article  CAS  Google Scholar 

  7. Mimmack ML, Ryan M, Baba H, Navarro-Ruiz J, Iritani S, Faull RL et al. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci USA 2002; 99: 4680–4685.

    Article  CAS  Google Scholar 

  8. Pongrac J, Middleton FA, Lewis DA, Levitt P, Mirnics K . Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem Res 2002; 27: 1049–1063.

    Article  CAS  Google Scholar 

  9. Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood III WH, Donovan DM et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 2001; 55: 641–650.

    Article  CAS  Google Scholar 

  10. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  Google Scholar 

  11. Bezchlibnyk YB, Wang JF, McQueen GM, Young LT . Gene expression differences in bipolar disorder revealed by cDNA array analysis of post-mortem frontal cortex. J Neurochem 2001; 79: 826–834.

    Article  CAS  Google Scholar 

  12. Sokolov BP, Jiang L, Trivedi NS, Aston C . Transcription profiling reveals mitochondrial, ubiquitin and signaling systems abnormalities in postmortem brains from subjects with a history of alcohol abuse or dependence. J Neurosci Res 2003; 72: 756–767.

    Article  CAS  Google Scholar 

  13. Brody AL, Barsom MW, Bota RG, Saxena S . Prefrontal–subcortical and limbic circuit mediation of major depressive disorder. Semin Clin Neuropsychiatry 2001; 6: 102–112.

    Article  CAS  Google Scholar 

  14. Drevets WC . Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 2000; 126: 413–431.

    Article  CAS  Google Scholar 

  15. Videbech P . PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand 2000; 101: 11–20.

    Article  CAS  Google Scholar 

  16. Partiot A, Grafman J, Sadato N, Wachs J, Hallett M . Brain activation during the generation of non-emotional and emotional plans. Neuroreport 1995; 6: 1397–1400.

    Article  CAS  Google Scholar 

  17. Beauregard M, Leroux JM, Bergman S, Arzoumanian Y, Beaudoin G, Bourgouin P et al. The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport 1998; 9: 3253–3258.

    Article  CAS  Google Scholar 

  18. Awata S, Ito H, Konno M, Ono S, Kawashima R, Fukuda H et al. Regional cerebral blood flow abnormalities in late-life depression: relation to refractoriness and chronification. Psychiatry Clin Neurosci 1998; 52: 97–105.

    Article  CAS  Google Scholar 

  19. Brody AL, Saxena S, Stoessel P, Gillies LA, Fairbanks LA, Alborzian S et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch Gen Psychiatry 2001; 58: 631–640.

    Article  CAS  Google Scholar 

  20. Kumari V, Mitterschiffthaler MT, Teasdale JD, Malhi GS, Brown RG, Giampietro V et al. Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biol Psychiatry 2003; 54: 777–791.

    Article  Google Scholar 

  21. Lubar JF, Congedo M, Askew JH . Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. Int J Psychophysiol 2003; 49: 175–185.

    Article  Google Scholar 

  22. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The Stanley foundation brain collection and neuropathology consortium. Schizophr Res 2000; 44: 151–155.

    Article  CAS  Google Scholar 

  23. Sokolov BP . Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of ‘neuroleptic-free’ schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochem 1998; 71: 2454–2464.

    Article  CAS  Google Scholar 

  24. Li C, Wong WH . Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001; 98: 31–36.

    Article  CAS  Google Scholar 

  25. Hernandez I, Sokolov BP . Abnormal expression of serotonin transporter mRNA in the frontal and temporal cortex of schizophrenics. Mol Psychiatry 1997; 2: 57–64.

    Article  CAS  Google Scholar 

  26. Hernandez I, Sokolov BP . Abnormalities in 5-HT2A receptor mRNA expression in frontal cortex of chronic elderly schizophrenics with varying histories of neuroleptic treatment. J Neurosci Res 2000; 59: 218–225.

    Article  CAS  Google Scholar 

  27. Polesskaya OO, Sokolov BP . Differential expression of the ‘C’ and ‘T’ alleles of the 5-HT2A receptor gene in the temporal cortex of normal individuals and schizophrenics. J Neurosci Res 2002; 67: 812–822.

    Article  CAS  Google Scholar 

  28. Tcherepanov AA, Sokolov BP . Age-related abnormalities in expression of mRNAs encoding synapsin 1A, synapsin 1B, and synaptophysin in the temporal cortex of schizophrenics. J Neurosci Res 1997; 49: 639–644.

    Article  CAS  Google Scholar 

  29. Reiner A, Yekutieli D, Benjamini Y . Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003; 19: 368–375.

    Article  CAS  Google Scholar 

  30. Hosack DA, Dennis Jr G, Sherman BT, Lane HC, Lempicki RA . Identifying biological themes within lists of genes with EASE. Genome Biol 2003; 4: R70.

    Article  Google Scholar 

  31. Calaora V, Rogister B, Bismuth K, Murray K, Brandt H, Leprince P et al. Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J Neurosci 2001; 21: 4740–4751.

    Article  CAS  Google Scholar 

  32. Lee H, Maihle NJ . Isolation and characterization of four alternate c-erbB3 transcripts expressed in ovarian carcinoma-derived cell lines and normal human tissues. Oncogene 1998; 16: 3243–3252.

    Article  CAS  Google Scholar 

  33. Satoh K, Yanai H, Senda T, Kohu K, Nakamura T, Okumura N et al. DAP-1, a novel protein that interacts with the guanylate kinase-like domains of hDLG and PSD-95. Genes Cells 1997; 2: 415–424.

    Article  CAS  Google Scholar 

  34. Zeng Z, Su K, Kyaw H, Li Y . A novel endothelin receptor type-B-like gene enriched in the brain. Biochem Biophys Res Commun 1997; 233: 559–567.

    Article  CAS  Google Scholar 

  35. Vawter MP, Evans S, Choudary P, Tomita H, Meador-Woodruff J, Molnar M et al. Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology 2004; 29: 373–384.

    Article  CAS  Google Scholar 

  36. Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T . Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 2004; 9: 406–416.

    Article  CAS  Google Scholar 

  37. Lee CK, Weindruch R, Prolla TA . Gene-expression profile of the ageing brain in mice. Nat Genet 2000; 25: 294–297.

    Article  CAS  Google Scholar 

  38. Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 2004; 55: 346–352.

    Article  CAS  Google Scholar 

  39. Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV et al. Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 2004; 13: 609–616.

    Article  CAS  Google Scholar 

  40. Nave KA, Lai C, Bloom FE, Milner RJ . Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci USA 1986; 83: 9264–9268.

    Article  CAS  Google Scholar 

  41. Saugier-Veber P, Munnich A, Bonneau D, Rozet JM, Le Merrer M, Gil R et al. X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat Genet 1994; 6: 257–262.

    Article  CAS  Google Scholar 

  42. Sistermans EA, de Coo RF, van Beerendonk HM, Poll-The BT, Kleijer WJ, van Oost BA . Mutation detection in the aspartoacylase gene in 17 patients with Canavan disease: four new mutations in the non-Jewish population. Eur J Hum Genet 2000; 8: 557–560.

    Article  CAS  Google Scholar 

  43. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A et al. SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet 1998; 18: 171–173.

    Article  CAS  Google Scholar 

  44. Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M . Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot–Marie–Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet 2001; 10: 2783–2795.

    Article  CAS  Google Scholar 

  45. Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 2001; 15: 66–78.

    Article  CAS  Google Scholar 

  46. Wegner M . From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 1999; 27: 1409–1420.

    Article  CAS  Google Scholar 

  47. Kim T, Pfeiffer SE . Myelin glycosphingolipid/cholesterol-enriched microdomains selectively sequester the non-compact myelin proteins CNP and MOG. J Neurocytol 1999; 28: 281–293.

    Article  Google Scholar 

  48. Tamai Y, Kojima H, Saito S, Uchida K, Kitajima R, Komatsu H et al. Metamorphic changes in glycolipids and myelin proteins and 2′,3′-cyclic nucleotide 3′-phosphohydrolase in bullfrog and axolotl brains. J Neurochem 1993; 60: 1854–1863.

    Article  CAS  Google Scholar 

  49. Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB . Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci 1997; 17: 9095–9103.

    Article  CAS  Google Scholar 

  50. Cervera P, Tirard M, Barron S, Allard J, Trottier S, Lacombe J et al. Immunohistological localization of the myelinating cell-specific receptor LP(A1). Glia 2002; 38: 126–136.

    Article  Google Scholar 

  51. Bosio A, Binczek E, Le Beau MM, Fernald AA, Stoffel W . The human gene CGT encoding the UDP-galactose ceramide galactosyl transferase (cerebroside synthase): cloning, characterization, and assignment to human chromosome 4, band q26. Genomics 1996; 34: 69–75.

    Article  CAS  Google Scholar 

  52. Riethmacher D, Sonnenberg-Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C . Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 1997; 389: 725–730.

    Article  CAS  Google Scholar 

  53. Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 2002; 129: 681–693.

    PubMed  CAS  Google Scholar 

  54. Steingard RJ, Renshaw PF, Hennen J, Lenox M, Cintron CB, Young AD et al. Smaller frontal lobe white matter volumes in depressed adolescents. Biol Psychiatry 2002; 52: 413–417.

    Article  Google Scholar 

  55. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085–1098.

    Article  CAS  Google Scholar 

  56. Cotter DR, Pariante CM, Everall IP . Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001; 55: 585–595.

    Article  CAS  Google Scholar 

  57. O'Brien J, Ames D, Chiu E, Schweitzer I, Desmond P, Tress B . Severe deep white matter lesions and outcome in elderly patients with major depressive disorder: follow up study. BMJ 1998; 317: 982–984.

    Article  CAS  Google Scholar 

  58. Kumar A, Thomas A, Lavretsky H, Yue K, Huda A, Curran J et al. Frontal white matter biochemical abnormalities in late-life major depression detected with proton magnetic resonance spectroscopy. Am J Psychiatry 2002; 159: 630–636.

    Article  Google Scholar 

  59. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI . Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004; 67: 269–275.

    Article  Google Scholar 

  60. Hamidi M, Drevets WC, Price JL . Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 2004; 55: 563–569.

    Article  Google Scholar 

  61. Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 2003; 111: 323–332.

    Article  CAS  Google Scholar 

  62. Bacich DJ, Pinto JT, Tong WP, Heston WD . Cloning, expression, genomic localization, and enzymatic activities of the mouse homolog of prostate-specific membrane antigen/NAALADase/folate hydrolase. Mamm Genome 2001; 12: 117–123.

    Article  CAS  Google Scholar 

  63. Coyle JT . The nagging question of the function of N-acetylaspartylglutamate. Neurobiol Dis 1997; 4: 231–238.

    Article  CAS  Google Scholar 

  64. Passani LA, Vonsattel JP, Carter RE, Coyle JT . N-acetylaspartylglutamate, N-acetylaspartate, and N-acetylated alpha-linked acidic dipeptidase in human brain and their alterations in Huntington and Alzheimer's diseases. Mol Chem Neuropathol 1997; 31: 97–118.

    Article  CAS  Google Scholar 

  65. Lewohl JM, Wang L, Miles MF, Zhang L, Dodd PR, Harris RA . Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin Exp Res 2000; 24: 1873–1882.

    Article  CAS  Google Scholar 

  66. Mayfield RD, Lewohl JM, Dodd PR, Herlihy A, Liu J, Harris RA . Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J Neurochem 2002; 81: 802–813.

    Article  CAS  Google Scholar 

  67. Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL et al. Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. JAMA 1990; 264: 2511–2518.

    Article  CAS  Google Scholar 

  68. Kessler RC, Crum RM, Warner LA, Nelson CB, Schulenberg J, Anthony JC . Lifetime co-occurrence of DSM-III-R alcohol abuse and dependence with other psychiatric disorders in the National Comorbidity Survey. Arch Gen Psychiatry 1997; 54: 313–321.

    Article  CAS  Google Scholar 

  69. Wong ML, O'Kirwan F, Hannestad JP, Irizarry KJ, Elashoff D, Licinio J . St John's wort and imipramine-induced gene expression profiles identify cellular functions relevant to antidepressant action and novel pharmacogenetic candidates for the phenotype of antidepressant treatment response. Mol Psychiatry 2004; 9: 237–251.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Postmortem brains were the courtesy of Drs LB Bigelow, J Cervenak, MM Herman, TM Hyde, JE Kleinman, JD Paltan, RM Post, EF Torrey, MJ Webster and RH Yolken. We thank OO Polesskaya for expert help in some experiments and Dr Kurex Sidik for assistance with statistical analysis. BRB ArrayTools was developed by Dr Richard Simon and Amy Peng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B P Sokolov.

Additional information

Supplementary information accompanies the paper on Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aston, C., Jiang, L. & Sokolov, B. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 10, 309–322 (2005). https://doi.org/10.1038/sj.mp.4001565

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001565

Keywords

This article is cited by

Search

Quick links