Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

BDNF in schizophrenia, depression and corresponding animal models

Abstract

Understanding the etiology and pathogenesis schizophrenia and depression is a major challenge facing psychiatry. One hypothesis is that these disorders are secondary to a malfunction of neurotrophic factors. Inappropriate neurotrophic support during brain development could lead to structural disorganisation in which neuronal networks are established in a nonoptimal manner. Inadequate neurotrophic support in adult individuals could ultimately be an underlying mechanism leading to decreased capacity of brain to adaptive changes and increased vulnerability to neurotoxic damage. Brain-derived neurotrophic factor (BDNF) is a mediator involved in neuronal survival and plasticity of dopaminergic, cholinergic, and serotonergic neurons in the central nervous system (CNS). In this review, we summarize findings regarding altered BDNF in schizophrenia and depression and animal models, as well as the effects of antipsychotic and antidepressive treatments on the expression of BDNF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lessmann V, Gottmann K, Malcangio M . Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 2003; 69: 341–374.

    Article  CAS  PubMed  Google Scholar 

  2. Hallbook F, Ibanez CF, Persson H . Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 1991; 6: 845–858.

    Article  CAS  PubMed  Google Scholar 

  3. Shintani F . Cytokines and neurotrophins in psychiatric disorders. Biomed Rev 1999; 10: 69–73.

    Article  Google Scholar 

  4. Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P et al. Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 2001; 52: 79–86.

    Article  CAS  PubMed  Google Scholar 

  5. Iritani S, Niizato K, Nawa H, Ikeda K, Emson PC . Immunohistochemical study of brain-derived neurotrophic factor and its receptor, TrkB, in the hippocampal formation of schizophrenic brains. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 801–807.

    Article  CAS  PubMed  Google Scholar 

  6. Toyooka K, Asama K, Watanabe Y, Muratake T, Takahashi M, Someya T et al. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res 2002; 110: 249–257.

    Article  CAS  PubMed  Google Scholar 

  7. Hattori M, Kunugi H, Akahane A, Tanaka H, Ishida S, Hirose T et al. Novel polymorphisms in the promoter region of the neurotrophin-3 gene and their associations with schizophrenia. Am J Med Genet 2002; 114: 304–309.

    Article  PubMed  Google Scholar 

  8. Jonsson E, Brene S, Zhang XR, Nimgaonkar VL, Tylec A, Schalling M et al. Schizophrenia and neurotrophin-3 alleles. Acta Psychiatr Scand 1997; 95: 414–419.

    Article  CAS  PubMed  Google Scholar 

  9. Szekeres G, Juhasz A, Rimanoczy A, Keri S, Janka Z . The C270T polymorphism of the brain-derived neurotrophic factor gene is associated with schizophrenia. Schizophr Res 2003; 65: 15–18.

    Article  PubMed  Google Scholar 

  10. Ashe PC, Chlan-Fourney J, Juorio AV, Li XM . Brain-derived neurotrophic factor (BDNF) mRNA in rats with neonatal ibotenic acid lesions of the ventral hippocampus. Brain Res 2002; 956: 126–135.

    Article  CAS  PubMed  Google Scholar 

  11. Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR . BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 2001; 14: 135–144.

    Article  CAS  PubMed  Google Scholar 

  12. Fumagalli F, Molteni R, Roceri M, Bedogni F, Santero R, Fossati C et al. Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. J Neurosci Res 2003; 72: 622–628.

    Article  CAS  PubMed  Google Scholar 

  13. Fiore M, Korf J, Antonelli A, Talamini L, Aloe L . Long-lasting effects of prenatal MAM exposure on water maze response in aged rats: correlation with altered brain development and neurotrophins' expression. Neurotoxicol Teratol 2002; 24: 179–191.

    Article  CAS  PubMed  Google Scholar 

  14. Zorner B, Wolfer DP, Brandis D, Kretz O, Zacher C, Madani R et al. Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than ‘depressive’. Biol Psychiatry 2003; 54: 972–982.

    Article  CAS  PubMed  Google Scholar 

  15. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM . Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109: 143–148.

    Article  CAS  PubMed  Google Scholar 

  16. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT . Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260–265.

    Article  CAS  PubMed  Google Scholar 

  17. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Altar CA, Laeng P, Jurata LW, Brockman JA, Lemire A, Bullard J et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 2004; 24: 2667–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM . Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56: 131–137.

    Article  CAS  PubMed  Google Scholar 

  20. Angelucci F, Aloe L, Jimenez-Vasquez P, Mathé AA . Mapping the differences in the brain concentrations of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in an animal model of depression. Neuroreport 2000; 11: 1369–1373.

    Article  CAS  PubMed  Google Scholar 

  21. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15: 1768–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Tone S, Senba E . Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 1997; 28: 103–110.

    Article  CAS  PubMed  Google Scholar 

  23. Tsai SJ . Down-regulation of the Trk-B signal pathway: the possible pathogenesis of major depression. Med Hypotheses 2004; 62: 215–218.

    Article  CAS  PubMed  Google Scholar 

  24. Angelucci F, Aloe L, Jimenez-Vasquez P, Mathé AA . Electroconvulsive stimuli alter the regional concentrations of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in adult rat brain. J ECT 2002; 18: 138–143.

    Article  PubMed  Google Scholar 

  25. Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S . Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology 2001; 158: 100–106.

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh A, Carnahan J, Greenberg ME . Requirement for BDNF in activity-dependent survival of cortical neurons. Science 1994; 263: 1618–1623.

    Article  CAS  PubMed  Google Scholar 

  27. Lindholm D, Carroll P, Tzimagiogis G, Thoenen H . Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci 1996; 8: 1452–1460.

    Article  CAS  PubMed  Google Scholar 

  28. Alderson RF, Alterman AL, Barde YA, Lindsay RM . Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 1990; 5: 297–306.

    Article  CAS  PubMed  Google Scholar 

  29. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991; 350: 230–232.

    Article  CAS  PubMed  Google Scholar 

  30. Eaton MJ, Whittemore SR . Autocrine BDNF secretion enhances the survival and serotonergic differentiation of raphe neuronal precursor cells grafted into the adult rat CNS. Exp Neurol 1996; 140: 105–114.

    Article  CAS  PubMed  Google Scholar 

  31. Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM . Overlapping and distinct actions of the neurotrophins BDNF, NT-3 and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 1994; 14: 335–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Knüsel B, Gao H, Okazaki T, Yoshida T, Mori N, Hefti F et al. Ligand-induced downregulationof Trk messenger RNA, protein and tyrosine phosphorylation in rat cortical neurons. Neuroscience 1997; 78: 851–862.

    Article  PubMed  Google Scholar 

  33. Shultz CW, Kimber T, Altar CA . BDNF attenuates the effects of intrastriatal injection of 6-hydroxydopamine. NeuroReport 1995; 6: 1109–1112.

    Article  Google Scholar 

  34. Hung HC, Lee EH . The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP+ toxicity: role of BDNF gene expression. Mol Brain Res 1996; 41: 14–26.

    Article  CAS  PubMed  Google Scholar 

  35. Siuciak JA, Altar CA, Wiegand SJ, Lindsay RM . Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res 1994; 633: 326–330.

    Article  CAS  PubMed  Google Scholar 

  36. Mamounas LA, Blue M, Siuciak JA, Altar CA . Brain-derived neurotrophic factor promotes the survival and sprouting of serotoninergic axons in rat brain. J Neurosci 1995; 15: 7929–7939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vaidya VA, Marek GJ, Aghajanian GK, Duman RS . 5-HT2A receptor-mediated regulation of brain derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 1997; 17: 2785–2795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zetterström TSC, Pei Q, Madhav TR, Coppell AL, Lewis L, Grahame-Smith DG . Manipulation of brain 5-HT levels affect genes expression for BDNF in rat brain. Neuropharmacology 1999; 38: 1063–1073.

    Article  PubMed  Google Scholar 

  39. Koliatsos VE, Price DL, Gouras GK, Cayouette MH, Burton LE, Winslow JW . Highly selective effects of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 on intact and injured basal forebrain magnocellular neurons. J Comp Neurol 1994; 343: 247–262.

    Article  CAS  PubMed  Google Scholar 

  40. Venero JL, Knusel B, Beck KD, Hefti F . Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections: effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration. Neuroscience 1994; 59: 797–815.

    Article  CAS  PubMed  Google Scholar 

  41. Altar CA, DiStefano PS . Neurotrophin trafficking by anterograde transport. Trends Neurosci 1998; 21: 433–437.

    Article  CAS  PubMed  Google Scholar 

  42. Kokaia Z, Bengzon J, Metsis M, Kokaia M, Persson H, Lindvall O . Coexpression of neurotrophins and their receptors in neurons of the central nervous system. Proc Natl Acad Sci USA 1993; 90: 6711–6715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ashe PC, Berry MD, Boulton AA . Schizophrenia, a neurodegenerative disorder with neurodevelopmental antecedents. Progr Neuropsychopharmacol Biol Psychiatry 2001; 25: 691–707.

    Article  CAS  Google Scholar 

  44. Sham PC, O'Callaghan E, Takey N, Murray GK, Hare EH, Murray RM . Schizophrenia following pre-natal exposure to influenza epidemics between 1939 and 1960. Br J Psychiatry 1992; 160: 461–466.

    Article  CAS  PubMed  Google Scholar 

  45. Davis JO, Phelps JA, Bracha HS . Prenatal development of monozygotic twins and concordance for schizophrenia. Schizophr Bull 1995; 21: 357–366.

    Article  CAS  PubMed  Google Scholar 

  46. DeLisi LE, Dauphinais ID, Gershon ES . Perinatal complications and reduced size of brain limbic structures in familial schizophrenia. Schizophr Bull 1988; 14: 185–191.

    Article  CAS  PubMed  Google Scholar 

  47. Brown R, Colter N, Corsellis J, Crow T, Frith C, Jagoe R et al. Post-mortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Arch Gen Psychiatry 1986; 43: 36–42.

    Article  CAS  PubMed  Google Scholar 

  48. Falkai P, Bogerts B . Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci 1986; 236: 154–161.

    Article  CAS  PubMed  Google Scholar 

  49. Arnold SE, Hyman BT, Van Hoesen GV, Damasio AR . Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 1991; 48: 625–632.

    Article  CAS  PubMed  Google Scholar 

  50. Braak H, Braak E . The human entorhinal cortex: normal morphology and lamina specific pathology in various diseases. Neurosci Res 1992; 48: 825–831.

    Google Scholar 

  51. Weinberger DR . Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 1999; 45: 395–402.

    Article  CAS  PubMed  Google Scholar 

  52. Thome J, Foley P, Riederer P . Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. Review article. J Neural Transm 1998; 105: 85–100.

    Article  CAS  PubMed  Google Scholar 

  53. Aloe L, Iannitelli A, Angelucci F, Bersani G, Fiore M . Studies in animal models and humans suggesting a role of nerve growth factor in schizophrenia-like disorders. Behav Pharmacol 2000; 11: 235–242.

    Article  CAS  PubMed  Google Scholar 

  54. Bersani G, Iannitelli A, Fiore M, Angelucci F, Aloe L . Data and hypotheses on the role of nerve growth factor and other neurotrophins in psychiatric disorders. Med Hypotheses 2000; 55: 199–207.

    Article  CAS  PubMed  Google Scholar 

  55. Fiore M, Korf J, Angelucci F, Talamini L, Aloe L . Prenatal exposure to methylazoxymethanol acetate in the rat alters neurotrophin levels and behavior: considerations for neurodevelopmental diseases. Physiol Behav 2000; 71: 57–67.

    Article  CAS  PubMed  Google Scholar 

  56. Fiore M, Aloe L, Westenbroek C, Amendola T, Antonelli A, Korf J . Bromodeoxyuridine and methylazoxymethanol exposure during brain development affects behavior in rats: consideration for a role of NGF and BDNF. Neurosci Lett 2001; 309: 113–116.

    Article  CAS  PubMed  Google Scholar 

  57. Fiore M, Talamini L, Angelucci F, Koch T, Aloe L, Korf J . Pharmacologically-induced damage in the entorhinal cortex alters behavior and brain NGF levels in young rats: a possible correlation with the development of schizophrenia-like deficits. Neuropharmacology 1999; 38: 857–869.

    Article  CAS  PubMed  Google Scholar 

  58. Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 2000; 5: 293–300.

    Article  CAS  PubMed  Google Scholar 

  59. Smith MA, Makino S, Kvetnansky R, Post RM . Effects of stress on neurotrophic factor expression in the rat brain. Ann NY Acad Sci USA 1995; 771: 234–239.

    Article  CAS  Google Scholar 

  60. Singh M, Meyer EM, Simpkins JW . The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague–Dawley rats. Endocrinology 1995; 136: 2320–2324.

    Article  CAS  PubMed  Google Scholar 

  61. Sajatovic M, Meltzer HY . The effect of short-term electroconvulsive treatment plus neuroleptics in treatment-resistant schizophrenia and schizoaffective disorder. Convuls Ther 1993; 9: 167–175.

    PubMed  Google Scholar 

  62. Lindefors N, Brodin E, Metsis M . Spatiotemporal selective effects on brain-derived neurotrophic factor and trkB messenger RNA in rat hippocampus by electroconvulsive shock. Neuroscience 1995; 65: 661–670.

    Article  CAS  PubMed  Google Scholar 

  63. Beauregard M, Bachevalier J . Neonatal insult to the hippocampal region and schizophrenia: a review and a putative animal model. Can J Psychiatr 1996; 41: 446–456.

    Article  CAS  Google Scholar 

  64. Joel D, Weiner I, Feldom J . Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin card sorting test, but do not disrupt latent inhibition: implication for animal models of schizophrenia. Behav Brain Res 1997; 85: 187–201.

    Article  CAS  PubMed  Google Scholar 

  65. Port RL, Sample JA, Seybold KS . Partial hippocampal pyramidal cell loss alters behavior in rats: implication for an animal model of schizophrenia. Brain Res Bull 1991; 26: 993–996.

    Article  CAS  PubMed  Google Scholar 

  66. Sams-Dodd F, Lipska BK, Weinberger DR . Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology 1997; 132: 303–310.

    Article  CAS  PubMed  Google Scholar 

  67. Daenen EW, Wolterink G, Gerrits MA, Van Ree JM . Amygdala or ventral hippocampal lesions at two early stages of life differentially affect open field behaviour later in life; an animal model of neurodevelopmental psychopathological disorders. Behav Brain Res 2002; 131: 67–78.

    Article  PubMed  Google Scholar 

  68. Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B . Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 2002; 27: 47–54.

    Article  PubMed  Google Scholar 

  69. Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM . Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response; implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur Neuropsychopharmacol 2003; 13: 187–197.

    Article  CAS  PubMed  Google Scholar 

  70. Ellenbroek BA, Willemen AP, Cools AR . Are antagonists of dopamine D1 receptors drugs that attenuate both positive and negative symptoms of schizophrenia? A pilot study in Java monkeys. Neuropsychopharmacology 1989; 2: 191–199.

    Article  CAS  PubMed  Google Scholar 

  71. Sams-Dodd F . Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav Pharmacol 1996; 7: 3–23.

    CAS  PubMed  Google Scholar 

  72. Talamini LM, Koch T, Luiten PG, Koolhaas JM, Korf J . Interruptions of early cortical development affect limbic association areas and social behaviour in rats; possible relevance for neurodevelopmental disorders. Brain Res 1999; 847: 105–120.

    Article  CAS  PubMed  Google Scholar 

  73. Talamini LM, Koch T, ter Horst GJ, Korf J . Interference with neurogenesis in the mediotemporal allocortex of the rat; a possible model for schizophrenia. Brain Res 1998; 789: 293–306.

    Article  CAS  PubMed  Google Scholar 

  74. Cattabeni F, Di Luca M . Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol. Physiol Rev 1997; 77: 199–215.

    Article  CAS  PubMed  Google Scholar 

  75. Bayer SA, Altman J . Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Progr Neurobiol 1987; 29: 57–106.

    Article  CAS  Google Scholar 

  76. Angelucci F, Aloe L, Gruber SHM, Fiore M, Mathé AA . Chronic antipsychotic treatment selectively alters nerve growth factor and neuropeptide Y immunoreactivity and the distribution of choline acetyl transferase in rat brain regions. Int J Neuropsychopharmacol 2000; 3: 13–25.

    Article  CAS  PubMed  Google Scholar 

  77. Angelucci F, Mathé AA, Aloe L . Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered following haloperidol and risperidone administration. J Neurosci Res 2000; 60: 783–794.

    Article  CAS  PubMed  Google Scholar 

  78. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P . BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 2001; 411: 86–89.

    Article  CAS  PubMed  Google Scholar 

  79. Sapolsky RM . Glucocorticoids, hippocampal damage and the glutamatergic synapse. Progr Brain Res 1990; 86: 13–23.

    Article  CAS  Google Scholar 

  80. Marmigere F, Givalois L, Rage F, Arancibia S, Tapia-Arancibia L . Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats. Hippocampus 2003; 13: 646–655.

    Article  CAS  PubMed  Google Scholar 

  81. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS . Hippocampal volume reduction in major depression. Am J Psychiatr 2000; 157: 115–118.

    Article  CAS  PubMed  Google Scholar 

  82. Sapolsky RM . Why stress is bad for your brain. Science 1996; 273: 749–750.

    Article  CAS  PubMed  Google Scholar 

  83. Sheline YI, Sanghavi M, Mintun MA, Gado MH . Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999; 19: 5034–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Young EA, Spencer RL, McEwen BS . Changes at multiple levels of the hypothalamo-pituitary adrenal axis following repeated electrically induced seizures. Psychoneuroendocrinology 1990; 15: 165–172.

    Article  CAS  PubMed  Google Scholar 

  85. Rajkowska G . Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 2000; 48: 766–777.

    Article  CAS  PubMed  Google Scholar 

  86. Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL . The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71: 651–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain derived neutrophic factor. Mol Psychiatry 2002; 7: 579–593.

    Article  CAS  PubMed  Google Scholar 

  88. Rezvani AH, Parsian A, Overstreet DH . The Fawn-Hooded (FH/Wjd) rat: a genetic animal model of comorbid depression and alcoholism. Psychiatr Genet 2002; 12: 1–16.

    Article  PubMed  Google Scholar 

  89. Solberg LC, Olson SL, Turek FW, Redei E . Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am J Physiol Regul Integr Comp Physiol 2001; 281: R786–R794.

    Article  CAS  PubMed  Google Scholar 

  90. Overstreet DH, Overstreet W, Overstreet RR, Helps SC, Messenger M . Selective breeding for sensitivity to the anticholinesterase, DFP. Psychopharmacology 1979; 65: 15–20.

    Article  CAS  PubMed  Google Scholar 

  91. Janowski DS, El-Yousefi MK, Davis JM, Sekerke HJ . A cholinergic–adrenergic hypothesis of mania and depression. Lancet 1972; 2: 632–635.

    Article  Google Scholar 

  92. Janowski DS, Risch SC, Parker D, Huey LY, Judd LL . Increased vulnerability to cholinergic stimulation in affective disorder patients. Psychopharmacol Bull 1980; 16: 29–31.

    Google Scholar 

  93. Risch SC, Kalin NH, Janowski DS . Cholinergic challenge in affective illness: behavioral and neuroendocrine correlates. J Clin Psychopharmacol 1981; 1: 186–192.

    Article  CAS  PubMed  Google Scholar 

  94. Higgins GA, Koh S, Chen KS, Gage FH . NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 1989; 3: 247–256.

    Article  CAS  PubMed  Google Scholar 

  95. Moreau JL, Scherschlicht R, Jenck F, Martin JR . Chronic mild stress-induced anhedonia model of depression; sleep abnormalities and curative effects of electroshock treatment. Behav Pharmacol 1995; 6: 682–687.

    Article  PubMed  Google Scholar 

  96. Guillin O, Griffon N, Diaz J, Le Foll B, Bezard E, Gross C et al. Brain-derived neurotrophic factor and the plasticity of the mesolimbic dopamine pathway. Int Rev Neurobiol 2004; 59: 425–444.

    Article  CAS  PubMed  Google Scholar 

  97. Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M et al. Brain-derived neurotrophic factor in the ventral midbrain–nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003; 54: 994–1005.

    Article  CAS  PubMed  Google Scholar 

  98. Jenkins JA, Williams P, Kramer GL, Davis LL, Petty F . The influence of gender and the estrous cycle on learned helplessness in the rat. Biol Psychology 2001; 58: 147–158.

    Article  CAS  Google Scholar 

  99. Vollmayr B, Faust H, Lewicka S, Henn FA . Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 2001; 6: 471–474.

    Article  CAS  PubMed  Google Scholar 

  100. Angelucci F, Aloe L, Jimenez-Vasquez P, Mathé AA . Lithium treatment alters brain concentrations of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in a rat model of depression. Int J Neuropsychopharmacol 2003; 6: 225–231.

    Article  CAS  PubMed  Google Scholar 

  101. Johnson GF . Lithium in depression: a review of the antidepressant and prophylactic effects of lithium. Aust NZ J Psychiatry 1987; 21: 356–365.

    Article  CAS  Google Scholar 

  102. Brown ES, Thomas NR, Carmody T, Mahadi S, Nejtek VA . Atypical antipsychotics in bipolar and schizoaffective disorders. Pharmacopsychiatry 2001; 34: 80–81.

    Article  CAS  PubMed  Google Scholar 

  103. Thase ME . What role do atypical antipsychotic drugs have in treatment-resistant depression? J Clin Psychiatry 2002; 63: 95–103.

    Article  CAS  PubMed  Google Scholar 

  104. Xu H, Qing H, Lu W, Keegan D, Richardson JS, Chlan-Fourney J et al. Quetiapine attenuates the immobilization stress-induced decrease of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 2002; 321: 65–68.

    Article  CAS  PubMed  Google Scholar 

  105. Alleva E, Aloe L, Bigi S . An updated role for nerve growth factor in neurobehavioural regulation of adult vertebrates. Rev Neurosci 1993; 4: 41–62.

    Article  CAS  PubMed  Google Scholar 

  106. Bersani G, Aloe L, Iannitelli A, Maselli P, Alleva E, Angelucci F et al. Low nerve growth factor plasma levels in schizophrenic patients: a preliminary study. Schizophr Res 1999; 37: 203–205.

    Google Scholar 

  107. Nawa H, Takahashi M, Patterson PH . Cytokine and growth factor involvement in schizophrenia—support for the developmental model. Mol Psychiatry 2000; 5: 594–603.

    Article  CAS  PubMed  Google Scholar 

  108. Lee J, Duan W, Mattson MP . Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 2002; 82: 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  109. Akil M, Lewis DA . Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatr 1997; 154: 1010–1012.

    Article  CAS  PubMed  Google Scholar 

  110. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    Article  PubMed  Google Scholar 

  111. Vaidya VA, Duman RS . Depression—emerging insights from neurobiology. Br Med Bull 2001; 57: 61–79.

    Article  CAS  PubMed  Google Scholar 

  112. Weinberger DR, Lipska BK . Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 1995; 16: 87–110.

    Article  CAS  PubMed  Google Scholar 

  113. Manji HK, Moore GJ, Chen G . Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilizers. Br J Psychiatry 2001; 41(Suppl): s107–s119.

    Article  CAS  Google Scholar 

  114. Wong ML, Licinio J . Research and treatment approaches to depression. Nat Rev Neurosci 2001; 2: 343–351.

    Article  CAS  PubMed  Google Scholar 

  115. Duman RS, Heninger GR, Nestler EJ . A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54: 597–606.

    Article  CAS  PubMed  Google Scholar 

  116. Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA . Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004; 55: 708–714.

    Article  CAS  PubMed  Google Scholar 

  117. Altar CA . Neurotrophins and depression. TIPS 1999; 20: 59–61.

    CAS  PubMed  Google Scholar 

  118. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM . Neurobiology of depression. Neuron 2002; 34: 13–25.

    Article  CAS  PubMed  Google Scholar 

  119. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The European Commission GENDEP project LSHB-CT-2003-503428 (to AAM), and the Swedish Medical Research Council grants 10414 (to Aleksander A Mathé) and 11642 (to Stefan Brené).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Mathé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelucci, F., Brenè, S. & Mathé, A. BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10, 345–352 (2005). https://doi.org/10.1038/sj.mp.4001637

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001637

Keywords

This article is cited by

Search

Quick links