Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder

Abstract

In a large Scottish pedigree, a balanced translocation t(1;11)(q42.1;q14.3) segregates with major mental illness, including schizophrenia, bipolar disorder, and recurrent major depression. The translocation is predicted to result in the loss of the C-terminal region of the protein product of Disrupted In SChizophrenia 1 (DISC1), a gene located on 1q42.1. Since this initial discovery, DISC1 has been functionally implicated in several processes, including neurodevelopment. Based on the genetic and functional evidence that DISC1 may be associated with schizophrenia, we sequenced portions of DISC1 in 28 unrelated probands with schizophrenia and six unrelated probands with schizoaffective disorder, ascertained as part of a large sibpair study. We detected a 4 bp deletion at the extreme 3′ end of exon 12 in a proband with schizophrenia. The mutation was also present in a sib with schizophrenia, a sib with schizoaffective disorder, and the unaffected father, while the mutation was not detected in 424 control individuals. The mutation is predicted to cause a frameshift and encode a truncated protein with nine abnormal C-terminal amino acids. The truncated transcript is detectable, but at a reduced level, in lymphoblastoid cell lines from three of four mutation carriers. These findings are consistent with the possibility that mutations in the DISC1 gene can increase the risk for schizophrenia and related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Mueser KT, McGurk SR . Schizophrenia. Lancet 2004; 363: 2063–2072.

    Article  PubMed  Google Scholar 

  2. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  3. Lencz T, Cornblatt B, Bilder RM . Neurodevelopmental models of schizophrenia: pathophysiologic synthesis and directions for intervention research. Psychopharmacol Bull 2001; 35: 95–125.

    CAS  PubMed  Google Scholar 

  4. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor MS, Devon RS, Millar JK, Porteous DJ . Evolutionary constraints on the Disrupted in Schizophrenia locus. Genomics 2003; 81: 67–77.

    Article  CAS  PubMed  Google Scholar 

  7. James R, Adams RR, Christie S, Buchanan SR, Porteous DJ, Millar JK . Disrupted in Schizophrenia 1 (DISC1) is a multicompartmentalized protein that predominantly localizes to mitochondria. Mol Cell Neurosci 2004; 26: 112–122.

    Article  CAS  PubMed  Google Scholar 

  8. Millar JK, Christie S, Anderson S, Lawson D, Hsiao-Wei Loh D, Devon RS et al. Genomic structure and localisation within a linkage hotspot of Disrupted In Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 2001; 6: 173–178.

    Article  CAS  PubMed  Google Scholar 

  9. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001; 10: 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  10. Ekelund J, Hennah W, Hiekkalinna T, Parker A, Meyer J, Lonnqvist J et al. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol Psychiatry 2004; 9: 1037–1041.

    Article  CAS  PubMed  Google Scholar 

  11. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  12. Hwu HG, Liu CM, Fann CS, Ou-Yang WC, Lee SF . Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol Psychiatry 2003; 8: 445–452.

    Article  CAS  PubMed  Google Scholar 

  13. Curtis D, Kalsi G, Brynjolfsson J, McInnis M, O’Neill J, Smyth C et al. Genome scan of pedigrees multiply affected with bipolar disorder provides further support for the presence of a susceptibility locus on chromosome 12q23–q24, and suggests the presence of additional loci on 1p and 1q. Psychiatr Genet 2003; 13: 77–84.

    PubMed  Google Scholar 

  14. Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK et al. A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 2004; 9: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  15. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  PubMed  Google Scholar 

  17. Austin CP, Ma L, Ky B, Morris JA, Shughrue PJ . DISC1 (Disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. Neuroreport 2003; 14: 951–954.

    Article  CAS  PubMed  Google Scholar 

  18. Ma L, Liu Y, Ky B, Shughrue PJ, Austin CP, Morris JA . Cloning and characterization of Disc1, the mouse ortholog of DISC1 (Disrupted-in-Schizophrenia 1). Genomics 2002; 80: 662–672.

    Article  CAS  PubMed  Google Scholar 

  19. Austin CP, Ky B, Ma L, Morris JA, Shughrue PJ . Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 2004; 124: 3–10.

    Article  CAS  PubMed  Google Scholar 

  20. Schurov IL, Handford EJ, Brandon NJ, Whiting PJ . Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Psychiatry 2004; 9: 1100–1110.

    Article  CAS  PubMed  Google Scholar 

  21. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  PubMed  Google Scholar 

  22. Morris JA, Kandpal G, Ma L, Austin CP . DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003; 12: 1591–1608.

    Article  CAS  PubMed  Google Scholar 

  23. Brandon NJ, Handford EJ, Schurov I, Rain JC, Pelling M, Duran-Jimeniz B et al. Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25: 42–55.

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 2000; 28: 681–696.

    Article  CAS  PubMed  Google Scholar 

  25. Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 2000; 28: 697–711.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen MD, Shu T, Sanada K, Lariviere RC, Tseng HC, Park SK et al. A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons. Nat Cell Biol 2004; 6: 595–608.

    Article  CAS  PubMed  Google Scholar 

  27. Lettice LA, Horikoshi T, Heaney SJ, van Baren MJ, van der Linde HC, Breedveld GJ et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci USA 2002; 99: 7548–7553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    Article  PubMed  Google Scholar 

  29. Nurnberger Jr JI, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 1994; 51: 849–859; discussion 863–864.

    Article  PubMed  Google Scholar 

  30. Millar JK, Christie S, Porteous DJ . Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem Biophys Res Commun 2003; 311: 1019–1025.

    Article  CAS  PubMed  Google Scholar 

  31. Liang Y, Yu W, Li Y, Yang Z, Yan X, Huang Q et al. Nudel functions in membrane traffic mainly through association with Lis1 and cytoplasmic dynein. J Cell Biol 2004; 164: 557–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reiner O, Cahana A, Escamez T, Martinez S . LIS1—no more no less. Mol Psychiatry 2002; 7: 12–16.

    Article  CAS  PubMed  Google Scholar 

  33. Millar JK, James R, Brandon NJ, Thomson PA . DISC1 and DISC2: discovering and dissecting molecular mechanisms underlying psychiatric illness. Ann Med 2004; 36: 367–378.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to the families who made this study possible. We greatly appreciate the pyrosequencing expertise of Dr Liying Yan from Biotage. We thank Colleen A Callahan, Roxann G Ingersoll, Abdulgafoor M Bachani, Hyon S Hwang and Marie Sonderman for technical assistance, Alka Ahuja for statistical advice, and Dr George A Vielhauer and Jeffrey M Catania for intellectual support. This work was supported, in part, by grants from the National Alliance for Research on Schizophrenia and Depression Young, Independent, and Distinguished Investigator Awards, grant T32MH15330 from the National Institutes of Health and the Stanley Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Margolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, N., Sawa, A., Holmes, S. et al. A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry 10, 758–764 (2005). https://doi.org/10.1038/sj.mp.4001667

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001667

Keywords

This article is cited by

Search

Quick links