Pharmacopsychiatry 2004; 37(2): 74-80
DOI: 10.1055/s-2004-815529
Original Paper
© Georg Thieme Verlag Stuttgart · New York

Abnormalities of Inhibitory Neuronal Mechanisms in the Motor Cortex of Patients with Schizophrenia

M. Bajbouj1 , J. Gallinat1 , L. Niehaus2 , U. E. Lang1 , S. Roricht2 , B.-U. Meyer2
  • 1Labor für Klinische Psychophysiologie, Department of Psychiatry, Freie Universität Berlin, Berlin, Germany
  • 2Department of Neurology, Charité, Campus Virchow-Klinikum, Humboldt-Universität zu Berlin, Berlin, Germany
Further Information

Publication History

Received: 13.11.2002 Revised: 30.1.2003

Accepted: 19.2.2003

Publication Date:
26 December 2004 (online)

Background: Focal transcranial magnetic stimulation (TMS) of the motor cortex was used to study two cortically activated inhibitory neuronal mechanisms that suppress ongoing tonic voluntary electromyographic activity in contralateral (postexcitatory inhibition [PI]) and ipsilateral (transcallosal inhibition [TI]) hand muscles. The PI follows the corticospinally mediated excitatory motor response (MEP) and is influenced by dopaminergic neurotransmission. TI reflects transcallosally mediated inhibition of the contralateral motor cortex, leading to motor inhibition in muscles ipsilateral to stimulation. PI and TI were studied to explore whether dopaminergic neurotransmission or interhemispheric transfers are altered in schizophrenia. Methods: TMS was performed in 16 patients with this disease and in 16 healthy control subjects. Surface electromyographic activity was recorded bilaterally from the first dorsal interosseous muscle during a sustained strong isometric contraction. Results: When compared with the findings in healthy subjects, patients with schizophrenia had a significantly longer PI and TI. The changes of the PI support the notion of an overactivity of the central dopaminergic system in schizophrenia. Conclusion: The prolonged TI suggests an abnormal activation of interhemispheric connections between the motor cortices and may be related to previously reported pathology of the corpus callosum in schizophrenic patients.

References

  • 1 Abarbanel J M, Lemberg T, Yaroslavski U, Grisaru N, Belmaker R H. Electrophysiological responses to transcranial magnetic stimulation in depression and schizophrenia.  Biol Psychiat. 1996;  40 148-150
  • 2 Angrist B M, Gershon S. The phenomenology of experimentally induced amphetamine psychosis-preliminary observations.  Biol Psychiat. 1970;  2 95-107
  • 3 Barker A T, Jalinous R, Freeston I L. Non-invasive magnetic stimulation of human motor cortex.  Lancet. 1985;  1 1106-1107
  • 4 Bogerts B, Falkai P, Haupts M, Greve B, Ernst S, Tapernon-Franz U. et al . Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Initial results from a new brain collection.  Schizophr Res. 1990;  3 295-301
  • 5 Boroojerdi B, Töpper R, Foltys H, Meincke U. Transcallosal inhibition and motor conduction studies in patients with schizophrenia using transcranial magnetic stimulation.  Br J Psychiatr. 1999;  157 375-379
  • 6 Braff D L, Geyer M A. Sensorimotor gating and schizophrenia: Human and animal model studies.  Arch Gen Psychiat. 1990;  47 181-188
  • 7 Breier A, Su T P, Carson R E, Kolachana B S, de Bartolomeis A, Weinberger D R. et al . Schizophrenia is associated with elevated amphetamine induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.  Proc Natl Acad Sci USA. 1997;  94 2569-257
  • 8 Callicott J H, Bertolino A, Mattay V S, Langheim F J, Duyn J, Coppola R. et al . Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited.  Cerebral Cortex. 2000;  10 1078-1092
  • 9 Cantello R, Gianelli M, Civardi C, Mutani R M. agnetic brain stimulation: the silent period after the motor evoked potential.  Neurology. 1992;  42 1951-1959
  • 10 Classen J, Benecke R. Inhibitory phenomena in individual motor units induced by transcranial magnetic stimulation.  Electroencephalogr Clin Neurophysiol. 1995;  97 264-274
  • 11 Coger R W, Serafetinides E A. Schizophrenia, corpus callosum, and interhemispheric communication: a review.  Psychiat Res. 1990;  34 163-184
  • 12 Coyle J T. The glutamatergic dysfunction hypothesis for schizophrenia.  Harv Rev Psychiat. 1996;  3 241-253
  • 13 Cross A J, Crow T J, Owen F. 3H-Flupenthixol binding in post-mortem brains of schizophrenics: evidence for a selective increase in dopamine D2 receptors.  Psychopharmacology (Berl). 1981;  74 122-124
  • 14 Daskalakis Z J, Christensen B K, Chen R, Fitzgerald P B, Zipursky R B, Kapur S. Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation.  Arch Gen Psychiat. 2002;  59 347-354
  • 15 Davey N J, Puri B K, Lewis H S, Lewis S W, Ellaway P H. Effects of antipsychotic medication on electromyographic responses to transcranial magnetic stimulation of the motor cortex in schizophrenia.  J Neurol Neurosurg Psychiat. 1997;  63 468-473
  • 16 David A S. Schizophrenia and the corpus callosum: developmental, structural and functional relationships.  Behav Brain Res. 1994;  64 203-211
  • 17 Day B L, Thompson P D, Dick J P, Nakashima K, Marsden C D. Different sites of action of electrical and magnetic stimulation of the human brain.  Neurosci Lett. 1987;  75 101-106
  • 18 Del Arco A, Mora F. Endogenous dopamine potentiates the effect of glutamate on extracellular GABA in the prefrontal cortex of the freely moving rat.  Brain Res Bull. 2000;  53 339-345
  • 19 Endicott J, Spitzer R, Fleiss J, Cohen J. The Global Assessment Scale.  Arch Gen Psychiat. 1976;  33 766-771
  • 20 Falkai P, Bogerts B, Rozumek M. Limbic pathology in schizophrenia: the entorhinal region - a morphometric study.  Biol Psychiat. 1988;  24 515-521
  • 21 Ferbert A, Priori A, Rothwell J C, Day B L, Colebatch J G, Marsden C D. Interhemispheric inhibition of the human motor cortex.  J Physiol. 1992;  453 525-546
  • 22 Fitzgerald P B, Brown T L, Daskalakis Z J, Kulkarni J. A transcranial magnetic stimulation study of inhibitory deficits in the motor cortex in patients with schizophrenia.  Psychiat Res. 2002;  114 11-21
  • 23 Fitzgerald P B, Brown T L, Daskalakis Z J, deCastella A, Kulkarni J. A study of transcallosal inhibition in schizophrenia using transcranial magnetic stimulation.  Schizophr Res. 2002;  56 199-209
  • 24 Fitzgerald P B, Brown T L, Daskalakis Z J, Kulkarni J. A transcranial magnetic stimulation study of the effects of olanzapine and risperidone on motor cortical excitability in patients with schizophrenia.  Psychopharmacology (Berl). 2002;  162 74-81
  • 25 Freedman R, Adler L E, Myles-Worsley M, Nagamoto H T, Miller C, Kisley M. , et al . Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation and an animal model.  Arch Gen Psychiat. 1996;  53 1114-1121
  • 26 Hoppner J, Kunesch E, Grossmann A, Tolzin C J, Schulz M, Schlafke D ,. et al . Dysfunction of transcallosally mediated motor inhibition and callosal morphology in patients with schizophrenia.  Acta Psychiat Scand. 2001;  104 227-235
  • 27 Joyce J N, Lexow N, Bird E, Winokur A. Organization of dopamine D1 and D2 receptors in human striatum: receptor autoradiographic studies in Huntington's disease and schizophrenia.  Synapse. 1988;  2 546-557
  • 28 Kay S R, Fiszbein A, Opler L AT. he positive and negative syndrome scale (PANSS) for schizophrenia.  Schizophr Bull. 1987;  13 261-276
  • 29 Laruelle M, Abi-Dargham A, van Dyck C H, Gil R, D'Souza C D, Erdos J. , et al . Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects.  Proc Natl Acad Sci USA . 1996;  93 9235-9240
  • 30 Masur H, Althoff S, Erim Y, Oberwittler C, Hornung W P. Postexcitatory inhibition after transcranial magnetic stimulation of the motor cortex in patients with drug-induced parkinsonism and in healthy individuals.  Int Clin Psychopharmacol. 1998;  13 79-82
  • 31 McCormick D A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity.  Prog Neurobiol. 1992;  39 337-388
  • 32 Meyer B U, Kühn A, Röricht S, Kupsch A. Direct activation of corticospinal fibres at the level of the internal capsule in man.  Clin Neurophysiol. 2001;  12 (Suppl) S7
  • 33 Meyer B U, Röricht S, Grafin von Einsiedel H, Kruggel F, Weindl A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum.  Brain. 1995;  118 429-440
  • 34 Meyer B U, Röricht S, Schmierer K, Irlbacher K, Meierkord H, Niehaus L. , et al . First diagnostic applications of transcallosal inhibition in diseases affecting callosal neurones (Multiple sclerosis, Hydrocephalus, Huntington's disease).  Electroencephalogr Clin Neurophysiol. 1999;  51 233-242
  • 35 Meyer B U, Röricht S, Woiciechowsky C. Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices.  Ann Neurol. 1998;  43 360-369
  • 36 Neumann M, Livak V, Paul H W, Laux G. Acute psychosis after administration of bupropion hydrochloride (Zyban).  Pharmacopsychiatry. 2002;  35 247-248
  • 37 Nordstrom A L, Farde L, Eriksson L, Halldin C. No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone.  Psychiat Res. 1995;  61 67-83
  • 38 Overall J E, Gorham D R. The Brief Psychiatric Rating Scale.  Psych Rep. 1962;  10 799-812
  • 39 Pakkenberg B. Post-mortem study of chronic schizophrenic brains.  Br J Psychiat. 1987;  151 744-752
  • 40 Paya B, Guisado J A, Vaz F J, Crespo-Facorro B. Visual hallucinations induced by the combination of prolintane and diphenhydramine.  Pharmacopsychiatry. 2002;  35 24-25
  • 41 Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M. Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson's disease and drug-induced parkinsonism.  Brain. 1994;  117 317-323
  • 42 Puri B K, Davey N J, Ellaway P H, Lewis S W. An investigation of motor function in schizophrenia using transcranial magnetic stimulation of the motor cortex.  Br J Psychiat. 1996;  169 690-695
  • 43 Puri B K, Lewis S W. Transcranial magnetic stimulation in psychiatric research.  Br J Psychiatry. 1996;  169 675-677
  • 44 Röricht S, Meyer B U, Woiciechowsky C, Lehmann R. Callosal and corticospinal tract function in patients with hydrocephalus: a morphometric and transcranial magnetic stimulation study.  J Neurology. 1998;  245 280-288
  • 45 Rosenthal R, Bigelow L B. Quantitative brain measurements in chronic schizophrenia.  Br J Psychiat. 1972;  121 259-264
  • 46 Rothwell J C. Physiological studies of electric and magnetic stimulation of the human brain.  Electroencephalogr Clin Neurophysiol. 1991;  43 (Suppl) 29-35
  • 47 Schmidt K, Nolte-Zenker B, Patzer J, Bauer M, Schmidt L G, Heinz A. Psychopathological correlates of reduced dopamine receptor sensitivity in depression, schizophrenia, and opiate and alcohol dependence.  Pharmacopsychiatry. 2001;  34 66-72
  • 48 Schmierer K, Niehaus L, Röricht S, Meyer B U. Conduction deficits of callosal fibres in early multiple sclerosis.  J Neurol Neurosurg Psychiat. 2000;  68 633-638
  • 49 Seeman P, Tallerico T. Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors.  Mol Psychiat. 1998;  3 123-134
  • 50 Seeman P, Kapur S. Schizophrenia: more dopamine, more D2 receptors.  Proc Natl Acad Sci USA. 2000;  97 8104-8109
  • 51 Selemon L D, Goldman-Rakic P S. The reduced neuropil hypothesis: a circuit based model of schizophrenia.  Biol Psychiat. 1999;  45 17-25
  • 52 Shenton M E, Dickey C C, Frumin M, McCarley R W. A review of MRI findings in schizophrenia.  Schizophr Res. 2001;  49 1-52
  • 53 Simpson G M, Angus J W S. A rating scale for extrapyramidal side effects.  Acta Psychiatr Scand. 1970;  212 (Suppl.) 11-9
  • 54 Valzania F, Strafella A P, Quatrale R, Santangelo M, Tropeani A, Lucchi D ,. et al . Motor evoked responses to paired cortical magnetic stimulation in Parkinson's disease.  Electroencephalogr Clin Neurophysiol. 1997;  105 37-43
  • 55 van Rossum J M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs.  Arch Int Pharmacodyn Ther. 1966;  160 492-494
  • 56 Werhahn K J, Kunesch E, Nochtar S, Benecke R, Classen J. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans.  J Physiol 199. ;  517 591-597
  • 57 Wong D F, Wagner H NJ, Tune L E, Dannals R F, Pearlson G D, Links J M,. et al . Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics.  Science. 1986;  234 1558-1563
  • 58 Zakzanis K K, Hansen K T. Dopamine D2 densities and the schizophrenic brain.  Schizophr Res. 1998;  32 201-206
  • 59 Ziemann U, Tergau F, Bruns D, Baudewig J, Paulus W. Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs.  Electroencephalogr Clin Neurophysiol. 1997;  105 430-437

Dr. Malek Bajbouj

Labor für Klinische Psychophysiologie

Department of Psychiatry

Freie Universität Berlin

Eschenallee 3

14050 Berlin

Germany

Phone: +49 30 8445 8622

Fax: +49 30 8445 8393

Email: malek.bajbouj@medizin.fu-berlin.de

    >