Skip to main content
Log in

Nuclear receptor coregulators are new players in nervous system development and function

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Steroid/thyroid hormones and their cognate nuclear receptors (NRs) play important roles in nervous system development and function. The spatial and temporal gene expression that is regulated by NRs in the nervous system requires transcriptional intermediary coregualtors, designated as coactivators and corepressors. These coregulators enhance or repress transcriptional activity of NRs and modulate their target gene transcription. Recent progress has largely advanced our understanding of the molecular mechanisms by which NR coregulators function in the nervous system. This article summarizes our current knowledge about the molecular mechanisms, expression patterns, and biological functions of NR coactivators, such as the p160 steroid receptor coactivator family, CBP, p300, BRG1, TRAP220, PGC-1α, ERAP140, NIX1, and E6-AP, as well as corepressors such as NCoR and SMRT. Accumulated findings suggest that the functional spectrum of NR coregulators is much broader than was initially speculated, and these coregulators likely contribute to many physiological aspects of nervous system development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lopes da Silva S. and Burbach J. P. (1995) The nuclear hormone-receptor family in the brain: classics and orphans. Trends Neurosci. 18, 542–548.

    Article  PubMed  CAS  Google Scholar 

  2. Couse J. F. and Korach K. S. (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocr. Rev. 20, 358–417.

    Article  PubMed  CAS  Google Scholar 

  3. Ogawa S., Eng V., Taylor J., Lubahn D. B., Korach K. S., and Pfaff D. W. (1998) Roles of estrogen receptor-alpha gene expression in reproduction-related behaviors in female mice. Endocrinology 139, 5070–5081.

    Article  PubMed  CAS  Google Scholar 

  4. Krege J. H., Hodgin J. B., Couse J. F., et al. (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc. Natl. Acad. Sci. USA 95, 15,677–15,682.

    Article  CAS  Google Scholar 

  5. Ogawa S., Lubahn D. B., Korach K. S., and Pfaff D. W. (1997) Behavioral effects of estrogen receptor gene disruption in male mice. Proc. Natl. Acad. Sci. USA 94, 1476–1481.

    Article  PubMed  CAS  Google Scholar 

  6. Simon N. G., Whalen R. E., and Tate M. P. (1985) Induction of male-typical aggression by androgens but not by estrogens in adult female mice. Horm. Behav. 19, 204–212.

    Article  PubMed  CAS  Google Scholar 

  7. Simon N. G. and Whalen R. E. (1987) Sexual differentiation of androgen-sensitive and estrogen-sensitive regulatory systems for aggressive behavior. Horm. Behav. 21, 493–500.

    Article  PubMed  CAS  Google Scholar 

  8. Lupien S. J. and McEwen B. S. (1997) The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res. Brain Res. Rev. 24, 1–27.

    Article  PubMed  CAS  Google Scholar 

  9. Weaver I. C., La Plante P., Weaver S., et al. (2001) Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Mol. Cell Endocrinol. 185, 205–218.

    Article  PubMed  CAS  Google Scholar 

  10. Meaney M. J., O’Donnell D., Rowe W., et al. (1995) Individual differences in hypothalamic-pituitary-adrenal activity in later life and hippocampal aging. Exp. Gerontol. 30, 229–251.

    Article  PubMed  CAS  Google Scholar 

  11. Reul J. M. and de Kloet E. R. (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511.

    Article  PubMed  CAS  Google Scholar 

  12. McEwen B. S., De Kloet E. R., and Rostene W. (1986) Adrenal steroid receptors and actions in the nervous system. Physiol. Rev. 66, 1121–1188.

    PubMed  CAS  Google Scholar 

  13. Kellendonk C., Gass P., Kretz O., Schutz G., and Tronche F. (2002) Corticosteroid receptors in the brain: gene targeting studies. Brain Res. Bull. 57, 73–83.

    Article  PubMed  CAS  Google Scholar 

  14. De Kloet E. R., Vreugdenhil E., Oitzl M. S., and Joels M. (1998) Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19, 269–301.

    Article  PubMed  Google Scholar 

  15. Oitzl M. S. and de Kloet E. R. (1992) Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav. Neurosci. 106, 62–71.

    Article  PubMed  CAS  Google Scholar 

  16. Oitzl M. S., de Kloet E. R., Joels M., Schmid W. and Cole T. J. (1997) Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. Eur. J. Neurosci. 9, 2284–2296.

    Article  PubMed  CAS  Google Scholar 

  17. Koibuchi N. and Chin W. W. (2000) Thyroid hormone action and brain development. Trends Endocrinol. Metab. 11, 123–128.

    Article  PubMed  CAS  Google Scholar 

  18. Fraichard A., Chassande O., Plateroti M., et al. (1997) The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J. 16, 4412–4420.

    Article  PubMed  CAS  Google Scholar 

  19. Gauthier K., Chassande O., Plateroti M., et al. (1999) Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J. 18, 623–631.

    Article  PubMed  CAS  Google Scholar 

  20. Morte B., Manzano J., Scanlan T., Vennstrom B., and Bernal J. (2002) Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc. Natl. Acad. Sci. USA 99, 3985–3989.

    Article  PubMed  CAS  Google Scholar 

  21. Giguere V., Tini M., Flock G., Ong E., Evans R. M., and Otulakowski G. (1994) Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538–553.

    Article  PubMed  CAS  Google Scholar 

  22. Hamilton B. A., Frankel W. N., Kerrebrock A. W., et al. (1996) Disruption of the nuclear hormone receptor ROR-alpha in staggerer mice. Nature 379, 736–739.

    Article  PubMed  CAS  Google Scholar 

  23. Dussault I., Fawcett D., Matthyssen A., Bader J. A., and Giguere V. (1998) Orphan nuclear receptor ROR alpha-deficient mice display the cerebellar defects of staggerer. Mech. Dev. 70, 147–153.

    Article  PubMed  CAS  Google Scholar 

  24. Chomez P., Neveu I., Mansen A., et al. (2000) Increased cell death and delayed development in the cerebellum of mice lacking the reverbA(alpha) orphan receptor. Development 127, 1489–1498.

    PubMed  CAS  Google Scholar 

  25. Tsai S. Y. and Tsai M. J. (1997) Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): coming of age. Endocr. Rev. 18, 229–240.

    Article  PubMed  Google Scholar 

  26. Qiu Y., Pereira F. A., DeMayo F. J., Lydon J. P., Tsai S. Y., and Tsai M. J. (1997) Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev. 11, 1925–1937.

    PubMed  CAS  Google Scholar 

  27. Zhou C., Qiu Y., Pereira F. A., Crair M. C., Tsai S. Y., and Tsai M. J. (1999) The nuclear orphan receptor COUP-TFI is required for differentiation of subplate neurons and guidance of thalamocortical axons. Neuron 24, 847–859.

    Article  PubMed  CAS  Google Scholar 

  28. Zetterstrom R. H., Solomin L., Jansson L., Hoffer B. J., Olson L., and Perlmann T. (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250.

    Article  PubMed  CAS  Google Scholar 

  29. Tetel M. J. (2000) Nuclear receptor coactivators in neuroendocrine function. J. Neuroendocrinol. 12, 927–932.

    Article  PubMed  CAS  Google Scholar 

  30. Meijer O. C. (2002) Coregulator proteins and corticosteroid action in the brain. J. Neuroendocrinol. 14, 499–505.

    Article  PubMed  CAS  Google Scholar 

  31. McKenna N. J. and O’Malley B. W. (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108, 465–474.

    Article  PubMed  CAS  Google Scholar 

  32. Lanz R. B., McKenna N. J., Onate S. A., et al. (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 17–27.

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe M., Yanagisawa J., Kitagawa H., et al. (2001) A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J. 20, 1341–1352.

    Article  PubMed  CAS  Google Scholar 

  34. McKenna N. J., Lanz R. B., and O’Malley B. W. (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20, 321–344.

    Article  PubMed  CAS  Google Scholar 

  35. Glass C. K. and Rosenfeld M. G. (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141.

    PubMed  CAS  Google Scholar 

  36. McKenna N. J. and O’Malley B. W. (2002) Minireview: nuclear receptor coactivators—an update. Endocrinology 143, 2461–2465.

    Article  PubMed  CAS  Google Scholar 

  37. Xu J. and Li Q. (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol. Endocrinol. 17, 1681–1692.

    Article  PubMed  CAS  Google Scholar 

  38. Onate S. A., Tasi S. Y., Tasi M. J., and O’Malley B. W. (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  39. Spencer T. E., Jenster G., Burcin M. M., et al. (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194–198.

    Article  PubMed  CAS  Google Scholar 

  40. Torchia J., Rose D. W., Inostroza J., et al. (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684.

    Article  PubMed  CAS  Google Scholar 

  41. Li J., O’Malley B. W., and Wong J. (2000) p300 requires its histone acetyltransferase activity and SRC-1 interaction domain of facilitate thyroid hormone receptor activation in chromatin. Mol. Cell Biol. 20, 2031–2042.

    Article  PubMed  CAS  Google Scholar 

  42. Koh S. S., Chen D., Lee Y. H., and Stallcup M. R. (2001) Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J. Biol. Chem. 276, 1089–1098.

    Article  PubMed  CAS  Google Scholar 

  43. Horlein A. J., Naar A. M., Heinzel T., et al. (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404.

    Article  PubMed  CAS  Google Scholar 

  44. Chen J. D. and Evans R. M. (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457.

    Article  PubMed  CAS  Google Scholar 

  45. Zamir I., Harding H. P., Atkins G. B., et al. (1996) A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell Biol. 16, 5458–5465.

    PubMed  CAS  Google Scholar 

  46. Shibata H., Nawaz Z., Tsai S. Y., O’Malley B. W., and Tsai M. J. (1997) Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT). Mol. Endocrinol. 11, 714–724.

    Article  PubMed  CAS  Google Scholar 

  47. Molenda H. A., Kilts C. P., Allen R. L., and Tetel M. J. (2003) Nuclear receptor coactivator function in reproductive physiology and behavior. Biol. Reprod. 69, 1449–1457.

    Article  PubMed  CAS  Google Scholar 

  48. Xu J. and O’Malley B. W. (2002) Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev. Endocr. Metab. Disord. 3, 185–192.

    Article  PubMed  CAS  Google Scholar 

  49. Hong H., Kohli K., Trivedi A., Johnson D. L., and Stallcup M. R. (1996) GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93, 4948–4952.

    Article  PubMed  CAS  Google Scholar 

  50. Voegel J. J., Heine M. J., Zechel C., Chambon P., and Gronemeyer H. (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675.

    PubMed  CAS  Google Scholar 

  51. Anzick S. L., Kononen J., Walker R. L., et al. (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968.

    Article  PubMed  CAS  Google Scholar 

  52. Chen H., Lin R. J., Schiltz R. L., et al. (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580.

    Article  PubMed  CAS  Google Scholar 

  53. Li H., Gomes P. J., and Chen J. D. (1997) RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc. Natl. Acad. Sci. USA 94, 8479–8484.

    Article  PubMed  CAS  Google Scholar 

  54. Takeshita A., Cardona G. R., Koibuchi N., Suen C. S., and Chin W. W. (1997) TRAM-1, A novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J. Biol. Chem. 272, 27,629–27,634.

    Article  CAS  Google Scholar 

  55. Suen C. S., Berrodin T. J., Mastroeni R., Cheskis B. J., Lyttle C. R., and Frail D. E. (1998) A transcriptional coactivator, steroid receptor coactivator-3, selectively augments steroid receptor transcriptional activity. J. Biol. Chem. 273, 27,645–27,653.

    Article  CAS  Google Scholar 

  56. Misiti S., Koibuchi N., Bei M., Farsetti A., and Chin W. W. (1999) Expression of steroid receptor coactivator-1 mRNA in the developing mouse embryo: a possible role in olfactory epithelium development. Endocrinology 140, 1957–1960.

    Article  PubMed  CAS  Google Scholar 

  57. Mitev Y. A., Wolf S. S., Almeida O. F., and Patchev V. K. (2003) Developmental expression profiles and distinct regional estrogen responsiveness suggest a novel role for the steroid receptor coactivator SRC-1 as discriminative amplifier of estrogen signaling in the rat brain. FASEB J. 17, 518,519.

    PubMed  CAS  Google Scholar 

  58. Nishihara E., Yoshida-Komiya H., Chan C. S., et al. (2003) SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J. Neurosci. 23, 213–222.

    PubMed  CAS  Google Scholar 

  59. Shearman L. P., Zylka M. J., Reppert S. M., and Weaver D. R. (1999) Expression of basic helixloop-helix/PAS genes in the mouse suprachiasmatic nucleus. Neuroscience 89, 387–397.

    Article  PubMed  CAS  Google Scholar 

  60. Meijer O. C., Steenbergen P. J., and De Kloet E. R. (2000) Differential expression and regional distribution of steroid receptor coactivators SRC-1 and SRC-2 in brain and pituitary. Endocrinology 141, 2192–2199.

    Article  PubMed  CAS  Google Scholar 

  61. Misiti S., Schomburg L., Yen P. M., and Chin W. W. (1998) Expression and hormonal regulation of coactivator and corepressor genes. Endocrinology 139, 2493–2500.

    Article  PubMed  CAS  Google Scholar 

  62. Iannacone E. A., Yan A. W., Gauger K. J., Dowling A. L., and Zoeller R. T. (2002) Thyroid hormone exerts site-specific effects on SRC-1 and NCoR expression selectively in the neonatal rat brain. Mol. Cell Endocrinol. 186, 49–59.

    Article  PubMed  CAS  Google Scholar 

  63. Bousios S., Karandrea D., Kittas C., and Kitraki E. (2001) Effects of gender and stress on the regulation of steroid receptor coactivator-1 expression in the rat brain and pituitary. J. Steroid Biochem. Mol. Biol. 78, 401–407.

    Article  PubMed  CAS  Google Scholar 

  64. Auger A. P., Tetel M. J., and McCarthy M. M. (2000) Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc. Natl. Acad. Sci. USA 97, 7551–7555.

    Article  PubMed  CAS  Google Scholar 

  65. Monks D. A., Xu J., O’Malley B. W., and Jordan C. L. (2003) Steroid receptor coactivator-1 is not required for androgen-mediated sexual differentiation of spinal motoneurons. Neuroendocrinology 78, 45–51.

    Article  PubMed  CAS  Google Scholar 

  66. Xu J., Qiu Y., DeMayo F. J., Tsai S. Y., Tsai M. J. and O’Malley B. W. (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279, 1922–1925.

    Article  PubMed  CAS  Google Scholar 

  67. Sadow P. M., Koo E., Chassande O., et al. (2003) Thyroid hormone receptor-specific interactions with steroid receptor coactivator-1 in the pituitary. Mol. Endocrinol. 17, 882–894.

    Article  PubMed  CAS  Google Scholar 

  68. Koibuchi N. and Chin W. W. (1998) ROR alpha gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation. Endocrinology 139, 2335–2341.

    Article  PubMed  CAS  Google Scholar 

  69. Morimoto M., Morita N., Ozawa H., Yokoyama K., and Kawata M. (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci. Res. 26, 235–269.

    Article  PubMed  CAS  Google Scholar 

  70. Shughrue P. J., Lane M. V., and Merchenthaler I. (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J. Comp. Neurol. 388, 507–525.

    Article  PubMed  CAS  Google Scholar 

  71. Xu J., Liao L., Ning G., Yoshida-Komiya H., Deng C., and O’Malley B. W. (2000) The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. USA 97, 6379–6384.

    Article  PubMed  CAS  Google Scholar 

  72. Martinez de Arrieta C., Koibuchi N., and Chin W. W. (2000) Coactivator and corepressor gene expression in rat cerebellum during postnatal development and the effect of altered thyroid status. Endocrinology 141, 1693–1698.

    Article  PubMed  CAS  Google Scholar 

  73. Gehin M., Mark M., Dennefeld C., Dierich A., Gronemeyer H., and Chambon P. (2002) The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol. Cell Biol. 22, 5923–5937.

    Article  PubMed  CAS  Google Scholar 

  74. Wang Z., Rose D. W., Hermanson O., et al. (2000) Regulation of somatic growth by the p160 coactivator p/CIP. Proc. Natl. Acad. Sci. USA 97, 13,549–13,554.

    CAS  Google Scholar 

  75. Mitelman F. (1991) Catalog of Chromosome Aberrations in Cancer. Wiley-Liss, New York.

    Google Scholar 

  76. Liang J., Prouty L., Williams B. J., Dayton M. A., and Blanchard K. L. (1998) Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92, 2118–2122.

    PubMed  CAS  Google Scholar 

  77. Carapeti M., Aguiar R. C., Goldman J. M., and Cross N. C. (1998) A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91, 3127–3133.

    PubMed  CAS  Google Scholar 

  78. Carroll R. S., Brown M., Zhang J., DiRenzo J., De Mora J. F., and Black P. M. (2000) Expression of a subset of steroid receptor cofactors is associated with progesterone receptor expression in meningiomas. Clin. Cancer Res. 6, 3570–3575.

    PubMed  CAS  Google Scholar 

  79. Kwok R. P., Lundblad J. R., Chrivia J. C., et al. (1994) Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226.

    Article  PubMed  CAS  Google Scholar 

  80. Chrivia J. C., Kwok R. P., Lamb N., Hagiwara M., Montminy M. R., and Goodman R. H. (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859.

    Article  PubMed  CAS  Google Scholar 

  81. Stromberg H., Svensson S. P., and Hermanson O. (1999) Distribution of CREB-binding protein immunoreactivity in the adult rat brain. Brain Res. 818, 510–514.

    Article  PubMed  CAS  Google Scholar 

  82. Tanaka Y., Naruse I., Hongo T., et al. (2000) Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech. Dev. 95, 133–145.

    Article  PubMed  CAS  Google Scholar 

  83. Oike Y., Hata A., Mamiya T., et al. (1999) Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum. Mol. Genet. 8, 387–396.

    Article  PubMed  CAS  Google Scholar 

  84. Murphy D. D. and Segal M. (1996) Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. J. Neurosci. 16, 4059–4068.

    PubMed  CAS  Google Scholar 

  85. Murphy D. D. and Segal M. (1997) Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc. Natl. Acad. Sci. USA 94, 1482–1487.

    Article  PubMed  CAS  Google Scholar 

  86. Auger A. P., Perrot-Sinal T. S., Auger C. J., Ekas L. A., Tetel M. J., and McCarthy M. M. (2002) Expression of the nuclear receptor coactivator, cAMP response element-binding protein, is sexually dimorphic and modulates sexual differentiation of neonatal rat brain. Endocrinology 143, 3009–3016.

    Article  PubMed  CAS  Google Scholar 

  87. Molenda H. A., Griffin A. L., Auger A. P., McCarthy M. M., and Tetel M. J. (2002) Nuclear receptor coactivators modulate hormone-dependent gene expression in brain and female reproductive behavior in rats. Endocrinology 143, 436–444.

    Article  PubMed  CAS  Google Scholar 

  88. Whyte P., Williamson N. M., and Harlow E. (1989) Cellular targets for transformation by the adenovirus E1A proteins. Cell 56, 67–75.

    Article  PubMed  CAS  Google Scholar 

  89. Arany Z., Sellers W. R., Livingston D. M., and Eckner R. (1994) E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77, 799, 800.

    Article  PubMed  CAS  Google Scholar 

  90. Shikama N., Lyon J., and La Thangue N. B. (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7, 230.

    Article  CAS  Google Scholar 

  91. Ogawa H., Nishi M., and Kawata M. (2001) Localization of nuclear coactivators p300 and steroid receptor coactivator 1 in the rat hippocampus. Brain Res. 890, 197–202.

    Article  PubMed  CAS  Google Scholar 

  92. Yao T. P., Oh S. P., Fuchs M., et al. (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372.

    Article  PubMed  CAS  Google Scholar 

  93. Randazzo F. M., Khavari P., Crabtree G., Tamkun J., and Rossant J. (1994) brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev. Biol. 161, 229–242.

    Article  PubMed  Google Scholar 

  94. Bultman S., Gebuhr T., Yee D., et al. (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295.

    Article  PubMed  CAS  Google Scholar 

  95. Elfring L. K., Daniel C., Papoulas O., et al. (1998) Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148, 251–265.

    PubMed  CAS  Google Scholar 

  96. Galeeva A., Treuter E., Tuohimaa P., and Pelto-Huikko M. (2002) Comparative distribution of the mammalian mediator subunit thyroid hormone receptor-associated protein (TRAP220) mRNA in developing and adult rodent brain. Eur. J. Neuro. 16, 671–683.

    Article  Google Scholar 

  97. Ito M., Yuan C. X., Okano H. J., Darnell R. B., and Roeder R. G. (2000) Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol. Cell 5, 683–693.

    Article  PubMed  CAS  Google Scholar 

  98. Lowell B. B. and Spiegelman B. M. (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660.

    PubMed  CAS  Google Scholar 

  99. Spiegelman B. M., Puigserver P., and Wu Z. (2000) Regulation of adipogenesis and energy balance by PPARgamma and PGC-1. Int. J. Obes. Relat. Metab. Disord. 24, S8-S10.

    PubMed  CAS  Google Scholar 

  100. Tritos N. A., Mastaitis J. W., Kokkotou E. G., Puigserver P., Spiegelman B. M., and Maratos-Flier E. (2003) Characterization of the peroxi-some proliferator activated receptor coactivator 1 alpha (PGC 1alpha) expression in the murine brain. Brain Res. 961, 255–260.

    Article  PubMed  CAS  Google Scholar 

  101. Shao W., Halachmi S., and Brown M. (2002) ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol. Cell Biol. 22, 3358–3372.

    Article  PubMed  CAS  Google Scholar 

  102. Greiner E. F., Kirfel J., Greschik H., et al. (2000) Differential ligand-dependent protein-protein interactions between nuclear receptors and a neuronal-specific cofactor. Proc. Natl. Acad. Sci. USA 97, 7160–7165.

    Article  PubMed  CAS  Google Scholar 

  103. Cavailles V., Dauvois S., L’Horset F., et al. (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14, 3741–3751.

    PubMed  CAS  Google Scholar 

  104. Huibregtse J. M., Scheffner M., and Howley P. M. (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10, 4129–4135.

    PubMed  CAS  Google Scholar 

  105. Huibregtse J. M., Scheffner M., and Howley P. M. (1993) Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell Biol. 13, 775–784.

    PubMed  CAS  Google Scholar 

  106. Nawaz Z., Lonard D. M., Smith C. L., et al. (1999) The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell Biol. 19, 1182–1189.

    PubMed  CAS  Google Scholar 

  107. Rougeulle C., Glatt H., and Lalande M. (1997) The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat. Genet. 17, 14, 15.

    Article  PubMed  CAS  Google Scholar 

  108. Vu T. H. and Hoffman A. R. (1997) Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat. Genet. 17, 12, 13.

    Article  PubMed  CAS  Google Scholar 

  109. Jiang Y. H., Armstrong D., Albrecht U., et al. (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811.

    Article  PubMed  CAS  Google Scholar 

  110. Smith C. L., DeVera D. G., Lamb D. J., et al. (2002) Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction. Mol. Cell Biol. 22, 525–535.

    Article  PubMed  CAS  Google Scholar 

  111. Jepsen K., Hermanson O., Onami T. M., et al. (2000) Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763.

    Article  PubMed  CAS  Google Scholar 

  112. Mori N., Schoenherr C., Vandenbergh D. J., and Anderson D. J. (1992) A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9, 45–54.

    Article  PubMed  CAS  Google Scholar 

  113. Hermanson O., Jepsen K., and Rosenfeld M. G. (2002) N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419, 934–939.

    Article  PubMed  CAS  Google Scholar 

  114. Sauvageot C. M. and Stiles C. D. (2002) Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol. 12, 244–249.

    Article  PubMed  CAS  Google Scholar 

  115. Weigel N. L. and Zhang Y. (1998) Ligand-independent activation of steroid hormone receptors. J. Mol. Med. 76, 469–479.

    Article  PubMed  CAS  Google Scholar 

  116. Jay T. M. (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog. Neurobiol. 69, 375–390.

    Article  PubMed  CAS  Google Scholar 

  117. Plata-Salaman C. R. (1991) Epidermal growth factor and the nervous system. Peptides 12, 653–663.

    Article  PubMed  CAS  Google Scholar 

  118. Dutertre M. and Smith C. L. (2003) Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol. Endocrinol. 17, 1296–1314.

    Article  PubMed  CAS  Google Scholar 

  119. Tremblay A., Tremblay G. B., Labrie F., and Giguere V. (1999) Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol. Cell 3, 513–519.

    Article  PubMed  CAS  Google Scholar 

  120. Onate S. A., Boonyaratanakornkit V., Spencer T. E., et al. (1998) The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J. Biol. Chem. 273, 12,101–12,108.

    Article  CAS  Google Scholar 

  121. Schreihofer D. A., Resnick E. M., Lin V. Y., and Shupnik M. A. (2001) Ligand-independent activation of pituitary ER: dependence on PKA-stimulated pathways. Endocrinology 142, 3361–3368.

    Article  PubMed  CAS  Google Scholar 

  122. Cenni B. and Picard D. (1999) Ligand-independent activation of steroid receptors: new roles for old players. Trends Endocrinol. Metab. 10, 41–46.

    Article  CAS  PubMed  Google Scholar 

  123. Power R. F., Mani S. K., Codina J., Conneely O. M., and O’Malley B. W. (1991) Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254, 1636–1639.

    Article  PubMed  CAS  Google Scholar 

  124. Mani S. K., Allen J. M., Clark J. H., Blaustein J. D., and O’Malley B. W. (1994) Convergent pathways for steroid hormone- and neurotransmitter-induced rat sexual behavior. Science 265, 1246–1249.

    Article  PubMed  CAS  Google Scholar 

  125. Apostolakis E. M., Garai J., Lohmann J. E., Clark J. H., and O’Malley B. W. (2000) Epidermal growth factor activates reproductive behavior independent of ovarian steroids in female rodents. Mol. Endocrinol. 14, 1086–1098.

    Article  PubMed  CAS  Google Scholar 

  126. Atkins G. B., Hu X., Guenther M. G., Rachez C., Freedman L. P., and Lazar M. A. (1999) Coactivators for the orphan nuclear receptor RORalpha. Mol. Endocrinol. 13, 1550–1557.

    Article  PubMed  CAS  Google Scholar 

  127. Na S. Y., Lee S. K., Han S. J., Choi H. S., Im S. Y., and Lee J. W. (1998) Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. J. Biol. Chem. 273, 10,831–10,834.

    CAS  Google Scholar 

  128. Lee S. K., Kim H. J., Na S. Y., et al. (1998) Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J. Biol. Chem. 273, 16,651–16,654.

    CAS  Google Scholar 

  129. Wu R. C., Qin J., Hashimoto Y., et al. (2002) Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase. Mol. Cell Biol. 22, 3549–3561.

    Article  PubMed  CAS  Google Scholar 

  130. Li Y., Chopp M., Zhang Z. G., Zaloga C., Niewenhuis L., and Gautam S. (1994) p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 25, 849–855; discussion 855, 856.

    PubMed  CAS  Google Scholar 

  131. Culmsee C., Siewe J., Junker V., et al. (2003) Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J. Neurosci. 23, 8586–8595.

    PubMed  CAS  Google Scholar 

  132. The Huntington’s Disease Collaborative Research Group. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  133. Boutell J. M., Thomas P., Neal J. W., et al. (1999) Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Hum. Mol. Genet. 8, 1647–1655.

    Article  PubMed  CAS  Google Scholar 

  134. Yohrling G. J., Farrell L. A., Hollenberg A. N., and Cha J. H. (2003) Mutant huntingtin increases nuclear corepressor function and enhances ligand-dependent nuclear hormone receptor activation. Mol. Cell Neurosci. 23, 28–38.

    Article  PubMed  CAS  Google Scholar 

  135. Nucifora F. C., Jr., Sasaki M., Peters M. F., et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishihara, E., O’Malley, B.W. & Xu, J. Nuclear receptor coregulators are new players in nervous system development and function. Mol Neurobiol 30, 307–325 (2004). https://doi.org/10.1385/MN:30:3:307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:30:3:307

Index Entries

Navigation