Skip to main content
Log in

The serotonergic system and anxiety

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The wide use of serotonin reuptake inhibitors and serotonin receptor agonists in anxiety disorders has suggested a key role for the modulatory neurotransmitter in anxiety. However, serotonin’s specific role is still uncertain. This article reviews the literature concerning how and where serotonergic agents modulate anxiety. Varying and sometimes conflicting data from human and animal studies argue for both anxiolytic and anxiogenic roles for serotonin, depending on the specific disorder, structure, or behavioral task studied. However, recent data from molecular genetic studies in the mouse point toward two important roles for the serotonin 1A receptor. In development, serotonin acts through this receptor to promote development of the circuitry necessary for normal anxiety-like behaviors. In adulthood, serotonin reuptake inhibitors act through the same receptor to stimulate neurogenesis and reduce anxiety-like behaviors. These studies highlight that the complex serotonin system likely plays various roles in the regulation of anxiety both during development and in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez, C., Vitalis, T., Fon, E. A., et al. (2002) Effects of genetic depletion of monoamines on somatosensory cortical development. Neuroscience 115, 753–764.

    Article  PubMed  CAS  Google Scholar 

  • Andrade, R. (1998) Regulation of membrane excitability in the central nervous system by serotonin receptor subtypes. Ann. NY Acad. Sci. 861, 190–203.

    Article  PubMed  CAS  Google Scholar 

  • Andrade, R., and Chaput, Y. (1991) 5-hydroxytryptamine4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus. J. Pharmacol. Exp. Ther. 257, 930–937.

    PubMed  CAS  Google Scholar 

  • Andrade, R., and Nicoll, R. A. (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J. Physiol. 394, 99–124.

    PubMed  CAS  Google Scholar 

  • Barr, L. C., Goodman, W. K., Mcdougle, C. J., et al. (1994) Tryptophan depletion in patients with obsessive-compulsive disorder who respond to serotonin reuptake inhibitors. Arch. Gen. Psychiatry 51, 309–317.

    PubMed  CAS  Google Scholar 

  • Barr, L. C., Goodman, W. K., Price, L. H., Mcdougle, C. J., Charney, D. S. (1992) The serotonin hypothesis of obsessive compulsive disorder: Implications of pharmacologic challenge studies. J. Clin. Psychiatry 53(Suppl), 17–28.

    PubMed  Google Scholar 

  • Baumann, M. H., Mash, D. C., Staley, J. K. (1995) The serotonin agonist m-chlorophenylpiperazine (mcpp) binds to serotonin transporter sites in human brain. Neuroreport 6, 2150–2152.

    Article  PubMed  CAS  Google Scholar 

  • Beckett, S., and Marsden, C. A. (1997) The effect of central and systemic injection of the 5-ht1a receptor agonist 8-ohdpat and the 5-ht1a receptor antagonist way 100635 on periaqueductal grey-induced defence behaviour. J. Psychopharmacol. 11, 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Beckett, S. R., Lawrence, A. J., Marsden, C. A., Marshall, P. W. (1992) Attenuation of chemically induced defence response by 5-ht1 receptor agonists administered into the periaqueductal gray. Psychopharmacol. (Berl.) 108, 110–114.

    Article  CAS  Google Scholar 

  • Bel, N., and Artigas, F. (1993) Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphe nuclei. Synapse 15, 243–245.

    Article  PubMed  CAS  Google Scholar 

  • Bel, N., and Artigas, F. (1999) Modulation of the extracellular 5-hydroxytryptamine brain concentrations by the serotonin and noradrenaline reuptake inhibitor, milnacipran. Microdialysis studies in rats. Neuropsychopharmacology 21, 745–754.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C., Abrams, J., Nutt, D. (2001) Tryptophan depletion and its implications for psychiatry. Br. J. Psychiatry 178, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Bengel, D., Murphy, D. L., Andrews, A. M., et al. (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylene-dioxymethamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Mol. Pharmacol. 53, 649–655.

    PubMed  CAS  Google Scholar 

  • Bodnoff, S. R., Suranyi-Cadotte, B., Aitken, D. H., Quirion, R., Meaney, M. J. (1988) The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacol. (Berl.) 95, 298–302.

    Article  CAS  Google Scholar 

  • Bodnoff, S. R., Suranyi-Cadotte, B., Quirion, R., Meaney, M. J. (1989) A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety. Psychopharmacol. (Berl.) 97, 277–279.

    Article  CAS  Google Scholar 

  • Brandao, M. L., Lopez-Garcia, J. A., Graeff, F. G., Roberts, M. H. (1991) Electrophysiological evidence for excitatory 5-ht2 and depressant 5-ht1a receptors on neurones of the rat midbrain tectum. Brain Res. 556, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Carli, M., Tatarczynska, E., Cervo, L., Samanin, R. (1993) Stimulation of hippocampal 5-ht1a receptors causes amnesia and anxiolytic-like but not antidepressant-like effects in the rat. Eur. J. Pharmacol. 234, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Cases, O., Self, I., Grimsby, J., et al. (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOa. Science 268, 1763–1766.

    Article  PubMed  CAS  Google Scholar 

  • Cases, O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C., Gaspar, P. (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase a-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307.

    Article  PubMed  CAS  Google Scholar 

  • Charney, D. S., and Drevets, W. C. (2002) The neurobiological basis of anxiety disorders. In Davis, K. L., D. S. Charney, J. T. Coyle, and C. Nemeroff (eds.). Neuropsychopharmacology: The fifth generation of progress, Lippincott Williams and Wilkins, Philadelphia, pp. 901–930.

    Google Scholar 

  • Chen, L., He, M., Sibille, E., et al. (1999) Adaptive changes in postsynaptic dopamine receptors despite unaltered dopamine dynamics in mice lacking monoamine oxidase b. J. Neurochem. 73, 647–655.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T., and Duman, R. S. (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38, 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Deckert, J., Catalano, M., Syagailo, Y. V., et al. (1999) Excess of high activity monoamine oxidase a gene promoter alleles in female patients with panic disorder. Hum. Mol. Genet. 8, 621–624.

    Article  PubMed  CAS  Google Scholar 

  • D’sa, C., and Duman, R. S. (2002) Antidepressants and neuroplasticity. Bipolar Disord. 4, 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Evrard, A., Malagie, I., Laporte, A. M., et al. (2002) Altered regulation of the 5-ht system in the brain of mao-a knock-out mice. Eur. J. Neurosci. 15, 841–851.

    Article  PubMed  CAS  Google Scholar 

  • Fabre, V., Beaufour, C., Evrard, A., et al. (2000) Altered expression and functions of serotonin 5-ht1a and 5-ht1b receptors in knock-out mice lacking the 5-ht transporter. Eur. J. Neurosci. 12, 2299–2310.

    Article  PubMed  CAS  Google Scholar 

  • File, S. E., and Gonzalez, L. E. (1996a) Anxiolytic effects in the plus-maze of 5-ht1a-receptor ligands in dorsal raphe and ventral hippocampus. Pharmacol. Biochem. Behav. 54, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • File, S. E., Gonzalez, L. E., Andrews, N. (1996b) Comparative study of pre- and postsynaptic 5-ht1a receptor modulation of anxiety in two ethological animal tests. J. Neurosci. 16, 4810–4815.

    PubMed  CAS  Google Scholar 

  • Frisch, A., Michaelovsky, E., Rockah, R., et al. (2000) Association between obsessive-compulsive disorder and polymorphisms of genes encoding components of the serotonergic and dopaminergic pathways. Eur. Neuropsychopharmacol. 10, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W. (1994) Uptake inhibitors increase extracellular serotonin concentration measured by brain microdialysis. Life Sci. 55, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Germine, M., Goddard, A. W., Sholomskas, D. E., Woods, S. W., Charney, D. S., Heninger, G. R. (1994) Response to meta-chlorophenylpiperazine in panic disorder patients and healthy subjects: Influence of reduction in intravenous dosage. Psychiatry Res. 54, 115–133.

    Article  PubMed  CAS  Google Scholar 

  • Gingrich, J. A. (2002) Mutational analysis of the serotonergic system: Recent findings using knockout mice. Curr. Drug Target CNS Neurol. Disord. 1, 449–465.

    Article  CAS  Google Scholar 

  • Gobbi, G., Murphy, D. L., Lesch, K., Blier, P. (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J. Pharmacol. Exp. Ther. 296, 987–995.

    PubMed  CAS  Google Scholar 

  • Goddard, A. W., Charney, D. S., Germine, M., et al. (1995) Effects of tryptophan depletion on responses to yohimbine in healthy human subjects. Biol. Psychiatry 38, 74–85.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, J. M., Hirschfeld, R. M., Ninan, P. T. (2002a) New developments in the neurobiological basis of anxiety disorders. Psychopharmacol. Bull. 36(Suppl 2), 49–67.

    PubMed  Google Scholar 

  • Gorman, J. M., Kent, J. M., Coplan, J. D. (2002b) Current and emerging therapeutics of anxiety and stress disorders. In Davis, K. L., D. S. Charney, J. T. Coyle and C. Nemeroff (eds.). Neuropsychopharmacology: The fifth generation of progress, Lippincott Williams & Wilkins, Philadelphia, pp. 967–980.

    Google Scholar 

  • Gould, E. (1999) Serotonin and hippocampal neurogenesis. Neuropsychopharmacology 21, 46S-51S.

    PubMed  CAS  Google Scholar 

  • Graeff, F. G., Viana, M. B., Mora, P. O. (1997) Dual role of 5-ht in defense and anxiety. Neurosci. Biobehav. Rev. 21, 791–799.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. A., and Mcnaughton, N. (2000) The neuropsychology of anxiety. In The neuropsychology of anxiety, (2nd ed.). Oxford University Press, New York.

    Google Scholar 

  • Greenberg, B. D., Tolliver, T. J., Huang, S. J., Li, Q., Bengel, D., Murphy, D. L. (1999) Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am. J. Med. Genet. 88, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Griebel, G. (1995) 5-hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol. Therap. 65, 319–395.

    Article  CAS  Google Scholar 

  • Griebel, G., Moreau, J. L., Jenck, F., Misslin, R., Martin, J. R. (1994) Acute and chronic treatment with 5-ht reuptake inhibitors differentially modulate emotional responses in anxiety models in rodents. Psychopharmacol. (Berl.) 113, 463–470.

    Article  CAS  Google Scholar 

  • Groenink, L., Pattij, T., De Jongh, R., et al. (2003) 5-ht(1a) receptor knockout mice and mice over-expressing corticotropin-releasing hormone in models of anxiety. Eur. J. Pharmacol. 463, 185–3197.

    Article  PubMed  CAS  Google Scholar 

  • Gross, C., Zhuang, X., Stark, K., et al. (2002) Serotonin1a receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400.

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson, J. P., Nothen, M. M., Jonsson, E. G., et al. (1999) No association between serotonin transporter gene polymorphisms and personality traits. Am. J. Med. Genet. 88, 430–436.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, S. P., Heiman, G. A., Haghighi, F., et al. (1999) Lack of genetic linkage or association between a functional serotonin transporter polymorphism and panic disorder. Psychiatric Genet. 9, 1–6.

    Article  CAS  Google Scholar 

  • Hamilton, S. P., Slager, S. L., Heiman, G. A., et al. (2000) No genetic linkage or association between a functional promoter polymorphism in the monoamine oxidase-a gene and panic disorder. Mol. Psychiatry 5, 465–466.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, S., Inoue, T., Koyama T. (1996) Serotonin reuptake inhibitors reduce conditioned fear stress-induced freezing behavior in rats. Psychopharmacol. (Berl.) 123, 182–186.

    Article  CAS  Google Scholar 

  • Heisler, L. K., Chu, H. M., Brennan, T. J., et al. (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-ht1a receptor mutant mice. Proc. Natl. Acad. Sci. USA. 95, 15049–15054.

    Article  PubMed  CAS  Google Scholar 

  • Hendricks, T., Francis, N., Fyodorov, D., Deneris, E. S. (1999) The ets domain factor pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10348–10356.

    PubMed  CAS  Google Scholar 

  • Hendricks, T. J., Fyodorov, D. V., Wegman, L. J., et al. (2003) Pet-1 ets gene plays a critical role in 5-ht neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247.

    Article  PubMed  CAS  Google Scholar 

  • Hollander, E., Kwon, J., Weiller, F., et al. (1998) Serotonergic function in social phobia: comparison to normal control and obsessive-compulsive disorder subjects. Psychiatry Res. 79, 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, A., Murphy, D. L., Crawley, J. N. (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacol. (Berl.). 161, 160–167.

    Article  CAS  Google Scholar 

  • Hoyer, D., Hannon, J. P., Martin, G. R. (2002) Molecular, pharmacological and functional diversity of 5-ht receptors. Pharmacol. Biochem. Behav. 71, 533–554.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, T., Hashimoto, S., Tsuchiya, K., Izumi, T., Ohmori, T., Koyama, T. (1996) Effect of citalopram, a selective serotonin reuptake inhibitor, on the acquisition of conditioned freezing. Eur. J. Pharmacol. 311, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M. R., and Lydiard, R. B. (1995) The neurobiology of anxiety disorders. Psychiatr. Clin. North Am. 18, 681–725.

    PubMed  CAS  Google Scholar 

  • Jorm, A. F., Henderson, A. S., Jacomb, P. A., et al. (1998) An association study of a functional polymorphism of the serotonin transporter gene with personality and psychiatric symptoms. Mol. Psychiatry. 3, 449–451.

    Article  PubMed  CAS  Google Scholar 

  • Katsuragi, S., Kunugi, H., Sano, A., et al. (1999) Association between serotonin transporter gene polymorphism and anxiety-related traits. Biol. Psychiatry 45, 368–370.

    Article  PubMed  CAS  Google Scholar 

  • Kendler, K. S., Walters, E. E., Neale, M. C., Kessler, R. C., Heath, A. C., Eaves, L. J. (1995) The structure of the genetic and environmental risk factors for six major psychiatric disorders in women. Phobia, generalized anxiety disorder, panic disorder, bulimia, major depression, and alcoholism. Arch. Gen. Psychiatry. 52, 374–3383.

    PubMed  CAS  Google Scholar 

  • Kessler, R. C., and Greenberg, P. E. (2002) The economic burden of anxiety and stress disorders. In Davis, K. L., D. S. Charney, J. T. Coyle and C. Nemeroff (eds.), Neuropsychopharmacology: The fifth generation of progress, Lippincott Williams & Wilkins, Philadelphia, pp. 981–992.

    Google Scholar 

  • Kim, J. J., Shih, J. C., Chen, K., et al. (1997) Selective enhancement of emotional, but not motor, learning in monoamine oxidase a-deficient mice. Proc. Natl. Acad. Sci. USA. 94, 5929–5933.

    Article  PubMed  CAS  Google Scholar 

  • Klaassen, T., Klumperbeek, J., Deutz, N. E. P., Van Praag, H. M., Griez, E. (1998) Effects of tryptophan depletion on anxiety and on panic provoked by carbon dioxide challenge. Psychiatry Res. 77, 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Kostowski, W., Plaznik, A., Stefanski, R. (1989) Intra-hippocampal buspirone in animal models of anxiety. Eur. J. Pharmacol. 168, 393–3396.

    Article  PubMed  CAS  Google Scholar 

  • Kreiss, D. S., and Lucki, I. (1995) Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J. Pharmacol. Exp. Ther. 274, 8663–876.

    Google Scholar 

  • Kurt, M., Arik, A. C., Celik, S. (2000) The effects of sertraline and fluoxetine on anxiety in the elevated plus-maze test in mice. J. Basic Clin. Physiol. Pharmacol. 11, 173–180.

    PubMed  CAS  Google Scholar 

  • Lee, K., Dixon, A. K., Pinnock, R. D. (1999) Serotonin depolarizes hippocampal interneurones in the rat stratum oriens by interaction with 5ht2 receptors. Neurosci. Lett. 270, 56–358.

    Article  PubMed  CAS  Google Scholar 

  • Lesch, K. P. (2001) Molecular foundation of anxiety disorders. J. Neural Transm. 108, 717–746.

    Article  PubMed  CAS  Google Scholar 

  • Lesch, K. P., Bengel, D., Heils, A., et al. (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Wichems, C. H., Ma, L., Van De Kar, L. D., Garcia, F., Murphy, D. L. (2003) Brain region-specific alterations of 5-ht2a and 5-ht2c receptors in serotonin transporter knockout mice. J. Neurochem. 84, 1256–1265.

    Article  PubMed  CAS  Google Scholar 

  • Lira, A., Zhou, M., Castanon, N., et al. Altered dorsal raphé function and depression-related behaviors in serotonin transporter deficient mice altered depression and anxiety-related behaviors and impaired serotonergic function in serotonin transporter deficient mice. Biol. Psychiatry. 754, 960–971.

  • Malberg, J. E., Eisch, A. J., Nestler, E. J., Duman, R. S. (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110.

    PubMed  CAS  Google Scholar 

  • Mann, J. J., Huang, Y. Y., Underwood, M. D., et al. (2000) A serotonin transporter gene promoter polymorphism (5-httlpr) and prefrontal cortical binding in major depression and suicide. Arch. Gen. Psychiatry 57, 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, M., Kataoka, Y., Mataki, S., Kato, Y., Oi, K. (1996) Conflict situation increases serotonin release in rat dorsal hippocampus: In vivo study with microdialysis and Vogel test. Neurosci. Lett. 215, 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Millan, M. J., and Brocco, M. (2003) The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur. J. Pharmacol. 463, 67–96.

    Article  PubMed  CAS  Google Scholar 

  • Miller, H. E., Deakin, J. F., Anderson, I. M. (2000) Effect of acute tryptophan depletion on co2-induced anxiety in patients with panic disorder and normal volunteers. Br. J. Psychiatry. 176, 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Mossner, R., Albert, D., Persico, A. M., et al. (2000) Differential regulation of adenosine a(1) and a(2a) receptors in serotonin transporter and monoamine oxidase a-deficient mice. Eur. Neuropsychopharmacol. 10, 489–493.

    Article  PubMed  CAS  Google Scholar 

  • Naylor, L., Dean, B., Pereira, A., Mackinnon, A., Kouzmenko, A., Copolov, D. (1998) No association between the serotonin transporter-linked promoter region polymorphism and either schizophrenia or density of the serotonin transporter in human hippocampus. Mol. Med. 4, 671–674.

    PubMed  CAS  Google Scholar 

  • Njung’e, K., and Handley, S. L. (1991) Effects of 5-ht uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice; a putative test for anxiolytic agents. Br. J. Pharmacol. 104, 105–112.

    PubMed  CAS  Google Scholar 

  • Nogueira, R. L., and Graeff, F. G. (1995) Role of 5-ht receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol. Biochem. Behav. 52, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Nunes-De-Souza, R. L., Canto-De-Souza, A., Rodgers, R. J. (2002) Effects of intra-hippocampal infusion of way-100635 on plus-maze behavior in mice. Influence of site of injection and prior test experience. Brain Res. 927, 87–396.

    Article  PubMed  CAS  Google Scholar 

  • Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., Toth, M. (1998) Increased anxiety of mice lacking the serotonin1a receptor. Proc. Natl. Acad. Sci. USA. 95, 10734–10739.

    Article  PubMed  CAS  Google Scholar 

  • Pattij, T., Groenink, L., Oosting, R. S., Van Der Gugten, J., Maes, R. A., Olivier, B. (2002) Gaba(a)-benzodiazepine receptor complex sensitivity in 5-ht(1a) receptor knockout mice on a 129 / sv background. Eur. J. Pharmacol. 447, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Porter, R. H., Benwell, K. R., Lamb, H., et al. (1999) Functional characterization of agonists at recombinant human 5-ht2a, 5-ht2b and 5-ht2c receptors in cho-k1 cells. Br. J. Pharmacol. 128, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Przegalinski, E., Tatarczynska, E., Klodzinska, A., Chojnacka-Wojcik, E. (1994) The role of postsynaptic 5-ht1a receptors in the anticonflict effect of ipsapirone. Neuropharmacology 33, 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Rabiner, E. A., Messa, C., Sargent, P. A., et al. (2002) A database of [11c]way-100635 binding to 5-ht1a receptors in normal male volunteers: normative data and relationship to methodological, demographic, physiological, and behavioral variables. NeuroImage 15, 620–632.

    Article  PubMed  Google Scholar 

  • Radley, J. J., and Jacobs, B. L. (2002) 5-ht1a receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res. 955, 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Ramboz, S., Oosting, R., Amara, D. A., et al. (1998) Serotonin receptor 1a knockout: an animal model of anxiety-related disorder. Proc. Natl. Acad. Sci. USA. 95, 14476–14481.

    Article  PubMed  CAS  Google Scholar 

  • Rebsam, A., Seif, I., Gaspar, P. (2002) Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knockout mice. J. Neurosci 22, 8541–8552.

    PubMed  CAS  Google Scholar 

  • Ropert, N., and Guy, N. (1991) Serotonin facilitates GABA-ergic transmission in the ca1 region of rat hippocampus in vitro. J. Physiol. 441, 121–136.

    PubMed  CAS  Google Scholar 

  • Salichon, N., Gaspar, P., Upton, A. L., et al. (2001) Excessive activation of serotonin (5-ht) 1b receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J. Neurosci. 21, 884–896.

    PubMed  CAS  Google Scholar 

  • Santarelli, L., Saxe, M., Gross, C., et al. (2003) Hippocampal neurogenesis contributes to the behavioral effects of antidepressants. Science 301, 805–809.

    Article  PubMed  CAS  Google Scholar 

  • Schoeffter, P., and Hoyer, D. (1989) Interaction of arylpiperazines with 5-ht1a, 5-ht1b, 5-ht1c and 5-ht1d receptors: Do discriminatory 5-ht1b receptor ligands exist? Naunyn Schmiedebergs Arch. Pharmacol. 339, 675–683.

    Article  PubMed  CAS  Google Scholar 

  • Schruers, K., Van Diest, R., Overbeek, T., Griez, E. (2002) Acute l-5-hydroxytryptophan administration inhibits carbon dioxide-induced panic in panic disorder patients. Psychiatry Res. 113, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Shen, R. Y., and Andrade, R. (1998) 5-hydroxytryptamine2 receptor facilitates GABA-ergic neurotransmission in rat hippocampus. J. Pharmacol. Exp. Ther. 285, 805–812.

    PubMed  CAS  Google Scholar 

  • Shih, J. C., Ridd, M. J., Chen, K., et al. (1999) Ketanserin and tetrabenazine abolish aggression in mice lacking monoamine oxidase a. Brain Res. 835, 104–112.

    Article  PubMed  CAS  Google Scholar 

  • Sibille, E., Pavlides, C., Benke, D., Toth, M. (2000) Genetic inactivation of the serotonin(1a) receptor in mice results in downregulation of major gaba(a) receptor alpha subunits, reduction of gaba(a) receptor binding, and benzodiazepine-resistant anxiety. J. Neurosci. 20, 2758–2765.

    PubMed  CAS  Google Scholar 

  • Silva, R. C., and Brandao, M. L. (2000) Acute and chronic effects of gepirone and fluoxetine in rats tested in the elevated plus-maze: an ethological analysis. Pharmacol. Biochem. Behav. 65, 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Smeraldi, E., Diaferia, G., Erzegovesi, S., Lucca, A., Bellodi, L., Moja, E. A. (1996) Tryptophan depletion in obsessive-compulsive patients. Biol. Psychiatry 40, 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Stefanski, R., Palejko, W., Bidzinski, A., Kostowski, W., Plaznik, A. (1993) Serotonergic innervation of the hippocampus and nucleus accumbens septi and the anxiolytic-like action of midazolam and 5-ht1a receptor agonists. Neuropharmacology 32, 977–985.

    Article  PubMed  CAS  Google Scholar 

  • Stein, L., Wise, C. D., Berger, B. D. (1973) Anti-anxiety action of benzodiazepines: decrease in activity of serotonin neurons in the punishment system. In Soubrie, P. (ed.). Animal models in psychiatric disorders (3rd ed.) Karger, Basel, pp. 48–67.

    Google Scholar 

  • Tauscher, J., Bagby, R. M., Javanmard, M., Christensen, B. K., Kasper, S., Kapur, S. (2001) Inverse relationship between serotonin 5-ht(1a) receptor binding and anxiety: A [(11)c]way-100635 pet investigation in healthy volunteers. Am. J. Psychiatry 158, 1326–31328.

    Article  PubMed  CAS  Google Scholar 

  • Toth, M. (2003) 5-ht(1a) receptor knockout mouse as a genetic model of anxiety. Eur. J. Pharmacol. 463, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Viana, M. B., Tomaz, C., Graeff, F. G. (1994) The elevated t-maze: a new animal model of anxiety and memory. Pharmacol. Biochem. Behav. 49, 549–3554.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, J. R., Beer, B., Clody, D. E. (1971) A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21, 1–37.

    Article  PubMed  CAS  Google Scholar 

  • Whitton, P., and Curzon, G. (1990) Anxiogenic-like effect of infusing 1-(3-chlorophenyl) piperazine (mcpp) into the hippocampus. Psychopharmacol. (Berl.) 100, 138–140.

    Article  CAS  Google Scholar 

  • Winslow, J. T., and Insel, T. R. (1990) Serotonergic and catecholaminergic reuptake inhibitors have opposite effects on the ultrasonic isolation calls of rat pups. Neuropsychopharmacology 3, 51–59.

    PubMed  CAS  Google Scholar 

  • Wise, C. D., Berger, B. D., Stein, L. (1972) Benzodiazepines: anxiety-reducing activity by reduction of serotonin turnover in the brain. Science 177, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, S., Oishi, R., Gomita, Y. (1995) Anticonflict effects of acute and chronic treatments with buspirone and gepirone in rats. Pharmacol. Biochem. Behav. 50, 477–479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Hen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, J.A., Hen, R. The serotonergic system and anxiety. Neuromol Med 5, 27–40 (2004). https://doi.org/10.1385/NMM:5:1:027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:5:1:027

Index Entries

Navigation