Inhibition of auditory evoked potentials and prepulse inhibition of startle in DBA/2J and DBA/2Hsd inbred mouse substrains

Brain Res. 2003 Nov 28;992(1):85-95. doi: 10.1016/j.brainres.2003.08.035.

Abstract

Previous data have shown differences among inbred mouse strains in sensory gating of auditory evoked potentials, prepulse inhibition (PPI) of startle, and startle amplitude. These measures of sensory and sensorimotor gating have both been proposed as models for genetic determinants of sensory processing abnormalities in patients with schizophrenia and their first-degree relatives. Data from our laboratory suggest that auditory evoked potentials of DBA/2J mice differ from those previously described for DBA/2Hsd. Therefore, we compared evoked potentials and PPI in these two closely related substrains based on the hypothesis that any observed endophenotypic differences are more likely to distinguish relevant from incidental genetic heterogeneity than similar approaches using inbred strains that vary across the entire genome. We found that DBA/2Hsd substrain exhibited reduced inhibition of evoked potentials and reduced startle relative to the DBA/2J substrain without alterations in auditory sensitivity, amplitude of evoked potentials or PPI of startle. These results suggest that gating of auditory evoked potentials and PPI of startle measure different aspects of neuronal function. The differences between the substrains might reflect genetic drift. Alternatively, differences could arise from different rearing environments or other non-genetic factors. Future studies will attempt to determine the cause of these differences in sensory and sensorimotor processing between these two closely related inbred mouse strains.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Evoked Potentials, Auditory / genetics*
  • Genetics, Behavioral
  • Mice
  • Mice, Inbred DBA
  • Reflex, Startle / genetics*