Striatal contributions to working memory: a functional magnetic resonance imaging study in humans

Eur J Neurosci. 2004 Feb;19(3):755-60. doi: 10.1111/j.1460-9568.2004.03108.x.

Abstract

Although the role of the frontal cortex in executive performance has been widely accepted, issues regarding the contribution of subcortical structures to these functions remain unresolved. In this study, the neural circuitry underlying selective subcomponents of working memory was investigated using event-related functional magnetic resonance imaging (fMRI). Ten healthy volunteers performed a verbal memory task, which allowed different aspects of working memory function such as maintenance, retrieval and manipulation to be tested within the same general paradigm. During performance of this task as a whole, fMRI revealed increases in signal intensity throughout the frontostriatal network. However, when signal intensity during the manipulation of information within working memory was compared to that during periods requiring only simple maintenance and retrieval, significant changes were observed only in the caudate nuclei, bilaterally. These results suggest an essential and specific role for the caudate nucleus in executive function, which may underlie the cognitive disturbances observed in frontostriatal neurodegenerative disorders such as Parkinson's disease.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Brain Mapping
  • Corpus Striatum / anatomy & histology
  • Corpus Striatum / physiology*
  • Female
  • Functional Laterality
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Memory, Short-Term / physiology*
  • Middle Aged
  • Photic Stimulation
  • Prefrontal Cortex / anatomy & histology
  • Prefrontal Cortex / physiology
  • Reaction Time