Dopamine in drug abuse and addiction: results from imaging studies and treatment implications

Mol Psychiatry. 2004 Jun;9(6):557-69. doi: 10.1038/sj.mp.4001507.

Abstract

The involvement of dopamine in drug reinforcement is well recognized but its role in drug addiction is much less clear. Imaging studies have shown that the reinforcing effects of drugs of abuse in humans are contingent upon large and fast increases in dopamine that mimic but exceed in the intensity and duration those induced by dopamine cell firing to environmental events. In addition, imaging studies have also documented a role of dopamine in motivation, which appears to be encoded both by fast as well as smooth DA increases. Since dopamine cells fire in response to salient stimuli, the supraphysiological activation by drugs is likely to be experienced as highly salient (driving attention, arousal conditioned learning and motivation) and may also reset the thresholds required for environmental events to activate dopamine cells. Indeed, imaging studies have shown that in drug-addicted subjects, dopamine function is markedly disrupted (decreases in dopamine release and in dopamine D2 receptors in striatum) and this is associated with reduced activity of the orbitofrontal cortex (neuroanatomical region involved with salience attribution and motivation and implicated in compulsive behaviors) and the cingulate gyrus (neuroanatomical region involved with inhibitory control and attention and implicated in impulsivity). However, when addicted subjects are exposed to drug-related stimuli, these hypoactive regions become hyperactive in proportion to the expressed desire for the drug. We postulate that decreased dopamine function in addicted subjects results in decreased sensitivity to nondrug-related stimuli (including natural reinforcers) and disrupts frontal inhibition, both of which contribute to compulsive drug intake and impaired inhibitory control. These findings suggest new strategies for pharmacological and behavioral treatments, which focus on enhancing DA function and restoring brain circuits disrupted by chronic drug use to help motivate the addicted subject in activities that provide alternative sources of reinforcement, counteract conditioned responses, enhance their ability to control their drive to take drugs and interfere with their compulsive administration.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Attention Deficit Disorder with Hyperactivity / drug therapy
  • Brain / drug effects
  • Brain / physiopathology
  • Child
  • Dopamine / pharmacokinetics
  • Dopamine / physiology
  • Dopamine / therapeutic use*
  • Humans
  • Neurons / drug effects
  • Neurons / physiology
  • Substance-Related Disorders / drug therapy*

Substances

  • Dopamine