Hearing loss alters serotonergic modulation of intrinsic excitability in auditory cortex

J Neurophysiol. 2010 Nov;104(5):2693-703. doi: 10.1152/jn.01092.2009. Epub 2010 Sep 8.

Abstract

Sensorineural hearing loss during early childhood alters auditory cortical evoked potentials in humans and profoundly changes auditory processing in hearing-impaired animals. Multiple mechanisms underlie the early postnatal establishment of cortical circuits, but one important set of developmental mechanisms relies on the neuromodulator serotonin (5-hydroxytryptamine [5-HT]). On the other hand, early sensory activity may also regulate the establishment of adultlike 5-HT receptor expression and function. We examined the role of 5-HT in auditory cortex by first investigating how 5-HT neurotransmission and 5-HT(2) receptors influence the intrinsic excitability of layer II/III pyramidal neurons in brain slices of primary auditory cortex (A1). A brief application of 5-HT (50 μM) transiently and reversibly decreased firing rates, input resistance, and spike rate adaptation in normal postnatal day 12 (P12) to P21 rats. Compared with sham-operated animals, cochlear ablation increased excitability at P12-P21, but all the effects of 5-HT, except for the decrease in adaptation, were eliminated in both sham-operated and cochlear-ablated rats. At P30-P35, cochlear ablation did not increase intrinsic excitability compared with shams, but it did prevent a pronounced decrease in excitability that appeared 10 min after 5-HT application. We also tested whether the effects on excitability were mediated by 5-HT(2) receptors. In the presence of the 5-HT(2)-receptor antagonist, ketanserin, 5-HT significantly decreased excitability compared with 5-HT or ketanserin alone in both sham-operated and cochlear-ablated P12-P21 rats. However, at P30-P35, ketanserin had no effect in sham-operated and only a modest effect cochlear-ablated animals. The 5-HT(2)-specific agonist 5-methoxy-N,N-dimethyltryptamine also had no effect at P12-P21. These results suggest that 5-HT likely regulates pyramidal cell excitability via multiple receptor subtypes with opposing effects. These data also show that early sensorineural hearing loss affects the ability of 5-HT receptor activation to modulate A1 pyramidal cell excitability.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Auditory Cortex / drug effects
  • Auditory Cortex / metabolism
  • Auditory Cortex / physiopathology*
  • Electrophysiology
  • Hearing Loss / metabolism
  • Hearing Loss / physiopathology*
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • Neurons / drug effects
  • Neurons / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Serotonin, 5-HT2 / metabolism
  • Serotonin / metabolism*
  • Serotonin / pharmacology
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology

Substances

  • Receptors, Serotonin, 5-HT2
  • Serotonin