Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy

Hum Brain Mapp. 2016 Sep;37(9):3137-52. doi: 10.1002/hbm.23231. Epub 2016 May 2.

Abstract

Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

Keywords: default mode network; functional connectivity; functional magnetic resonance imaging; hippocampus; salience network; visuospatial network.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / physiopathology*
  • Brain Mapping
  • Epilepsy, Temporal Lobe / physiopathology*
  • Female
  • Functional Laterality / physiology*
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Neural Pathways / physiopathology*