Skip to main content
Log in

An Association Study on the Polymorphisms of Dopaminergic Genes with Working Memory in a Healthy Chinese Han Population

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Working memory (WM) is a highly heritable cognitive trait that is involved in many higher-level cognitive functions. In the past few years, much evidence has indicated that the reduction of dopamine activity in human brain can impair the WM system of the neuropsychiatric disorders. In this study, we hypothesized that some genes in the dopamine system were involved in the individual difference of the cognitive ability in healthy population. To confirm this hypothesis, a population-based study was performed to examine the effects of COMT, DAT 1, DRD 1, DRD 2, DRD 3, and DRD 4 on WM spans. Our results indicated there were significant associations of TaqIA and TaqIB in DRD 2 with digital WM span, respectively (χ2 = 9.460, p = 0.009; χ2 = 6.845, p = 0.033). On the other hand, we found a significant interaction between Ser9Gly in DRD 3 and TaqIA of DRD 2 on digital WM span (F = 3.207, p = 0.013). COMT, DAT 1 , DRD 1, and DRD 4, however, had no significant effects on digital and spatial WM spans (χ2<3.84, p > 0.05). These preliminary results further indicated that certain functional variants in dopamine system, such as TaqIA and TaqIB of DRD 2, were possibly involved in difference of WM in a healthy population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman PL, Beier ME et al (2002) Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. J Exp Psychol Gen 131(4):567–589

    Article  PubMed  Google Scholar 

  • Baddeley A (1992) Working memory. Science 255(5044):556–559

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Di Giorgio A et al (2008) Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks. Biol Psychiatry 64(3):226–234

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Fazio L et al (2009) Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans. J Neurosci 29(4):1224–1234

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Taurisano P et al (2011) Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance. PLoS One 5(2):e9348

    Article  Google Scholar 

  • Besret L, Dolle F et al (2008) Dopamine D1 receptor imaging in the rodent and primate brain using the isoquinoline +-[11C]A-69024 and positron emission tomography. J Pharm Sci 97(7):2811–2819

    Article  PubMed  CAS  Google Scholar 

  • Bishop SJ, Fossella J et al (2008) COMT val158met genotype affects recruitment of neural mechanisms supporting fluid intelligence. Cereb Cortex 18(9):2132–2140

    Article  PubMed  Google Scholar 

  • Blum K, Chen TJ et al (2009) Neurogenetics of dopaminergic receptor supersensitivity in activation of brain reward circuitry and relapse: proposing “deprivation-amplification relapse therapy” (DART). Postgrad Med 121(6):176–196

    Article  PubMed  Google Scholar 

  • Bombin I, Arango C et al (2008) DRD3, but not COMT or DRD2, genotype affects executive functions in healthy and first-episode psychosis adolescents. Am J Med Genet B 147B(6):873–879

    Article  Google Scholar 

  • Bonino D, Ricciardi E et al (2008) Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals. Arch Ital Biol 146(3–4):133–146

    PubMed  CAS  Google Scholar 

  • Braskie MN, Landau SM et al (2011) Correlations of striatal dopamine synthesis with default network deactivations during working memory in younger adults. Hum Brain Mapp 32(6):947–961

    Article  PubMed  Google Scholar 

  • Bruder GE, Keilp JG et al (2005) Catechol-O-methyltransferase (COMT) genotypes and working memory: associations with differing cognitive operations. Biol Psychiatry 58(11):901–907

    Article  PubMed  CAS  Google Scholar 

  • Campa D, Zienolddiny S et al (2007) Polymorphisms of dopamine receptor/transporter genes and risk of non-small cell lung cancer. Lung Cancer 56(1):17–23

    Article  PubMed  Google Scholar 

  • Chang L (2004) Working memory and processing speed in children with arithmetical difficulties. J Nanjing Univ (social science) 30(3):81–88

    Google Scholar 

  • Charlton CG, Crowell B Jr (2000) Effects of dopamine metabolites on locomotor activities and on the binding of dopamine: relevance to the side effects of l-dopa. Life Sci 66(22):2159–2171

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Lipska BK et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75(5):807–821

    Article  PubMed  CAS  Google Scholar 

  • Chen PS, Yang YK et al (2005) Correlation between different memory systems and striatal dopamine D2/D3 receptor density: a single photon emission computed tomography study. Psychol Med 35(2):197–204

    Article  PubMed  CAS  Google Scholar 

  • Conway AR, Kane MJ et al (2003) Working memory capacity and its relation to general intelligence. Trends Cogn Sci 7(12):547–552

    Article  PubMed  Google Scholar 

  • Drummond SP, Brown GG et al (2003) Brain regions involved in simple and complex grammatical transformations. Neuroreport 14(8):1117–1122

    Article  PubMed  Google Scholar 

  • Duff SC (2000) What’s working in working memory: a role for the central executive. Scand J Psychol 41(1):9–16

    Article  PubMed  CAS  Google Scholar 

  • Egan MF, Goldberg TE et al (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98(12):6917–6922

    Article  PubMed  CAS  Google Scholar 

  • Emilien G, Maloteaux JM et al (1999) Dopamine receptors–physiological understanding to therapeutic intervention potential. Pharmacol Ther 84(2):133–156

    Article  PubMed  CAS  Google Scholar 

  • Faul F, Erdfelder E et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Filopanti M, Lania AG et al (2011) Pharmacogenetics of D2 dopamine receptor gene in prolactin-secreting pituitary adenomas. Expert Opin Drug Metab Toxicol 6(1):43–53

    Article  Google Scholar 

  • Forster KI, Forster JC (2003) DMDX: a windows display program with millisecond accuracy. Behav Res Methods Instrum Comput 35(1):116–124

    Article  PubMed  Google Scholar 

  • Golimbet VE, Lebedeva IS et al (2005) A study of some genes related to serotoninergic and dopaminergic systems and auditory evoked-potentials (P300) in patients with schizophrenia and spectrum disorders and their first-degree relatives. Zh Nevrol Psikhiatr Im S S Korsakova 105(10):35–41

    PubMed  CAS  Google Scholar 

  • Gong P, Li J et al (2011a) Variants in COMT and DBH influence on response inhibition ability in Chinese Han females. Cell Mol Neurobiol 31(8):1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Gong P, Zhang F et al (2011b) No observable relationship between the 12 genes of nervous system and reasoning skill in a young Chinese Han population. Cell Mol Neurobiol 31(4):519–526

    Article  PubMed  Google Scholar 

  • Gong P, Zhang Z et al (2012) An association study of the genetic polymorphisms in 13 neural plasticity-related genes with semantic and episodic memories. J Mol Neurosci 46(2):352–361

    Article  PubMed  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20(1):60–80

    Article  PubMed  CAS  Google Scholar 

  • Harvey PO, Le Bastard G et al (2004) Executive functions and updating of the contents of working memory in unipolar depression. J Psychiatry Res 38(6):567–576

    Article  CAS  Google Scholar 

  • Hegarty M, Shah P et al (2000) Constraints on using the dual-task methodology to specify the degree of central executive involvement in cognitive tasks. Mem Cogn 28(3):376–385

    Article  CAS  Google Scholar 

  • Hirvonen MM, Laakso A et al (2009) C957T polymorphism of dopamine D2 receptor gene affects striatal DRD2 in vivo availability by changing the receptor affinity. Synapse 63(10):907–912

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Li MD (2009) Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol Psychiatry 65(8):702–705

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Ma JZ et al (2008) Significant association of DRD1 with nicotine dependence. Hum Genet 123(2):133–140

    Article  PubMed  CAS  Google Scholar 

  • Husted JA, Lim S et al (2009) Heritability of neurocognitive traits in familial schizophrenia. Am J Med Genet B 150B(6):845–853

    Article  Google Scholar 

  • Jaber M, Robinson SW et al (1996) Dopamine receptors and brain function. Neuropharmacology 35(11):1503–1519

    Article  PubMed  CAS  Google Scholar 

  • Jeanneteau F, Funalot B et al (2006) A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci USA 103(28):10753–10758

    Article  PubMed  CAS  Google Scholar 

  • Kopieniak M, Wieczorkiewicz-Plaza A et al (2004) Dopamine activity changes in cerebral cortex in the course of experimental acute pancreatitis. Ann Univ Mariae Curie Sklodowska Med 59(1):382–386

    PubMed  Google Scholar 

  • Kramer UM, Rojo N et al (2009) ADHD candidate gene (DRD4 exon III) affects inhibitory control in a healthy sample. BMC Neurosci 10:150

    Article  PubMed  Google Scholar 

  • Lai WS, Xu B et al (2006) Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci USA 103(45):16906–16911

    Article  PubMed  CAS  Google Scholar 

  • Lane HY, Liu YC et al (2008) Prefrontal executive function and D1, D3, 5-HT2A and 5-HT6 receptor gene variations in healthy adults. J Psychiatry Neurosci 33(1):47–53

    PubMed  Google Scholar 

  • Lepine R, Barrouillet P et al (2005) What makes working memory spans so predictive of high-level cognition? Psychon Bull Rev 12(1):165–170

    Article  PubMed  Google Scholar 

  • Liefooghe B, Barrouillet P et al (2008) Working memory costs of task switching. J Exp Psychol Learn Mem Cogn 34(3):478–494

    Article  PubMed  Google Scholar 

  • Loughead J, Wileyto EP et al (2009) Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. Mol Psychiatry 14(8):820–826

    Article  PubMed  CAS  Google Scholar 

  • Luca P, Laurin N et al (2007) Association of the dopamine receptor D1 gene, DRD1, with inattention symptoms in families selected for reading problems. Mol Psychiatry 12(8):776–785

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Naoi M et al (1996) The metabolism of l-DOPA and l-threo-3,4-dihydroxyphenylserine and their effects on monoamines in the human brain: analysis of the intraventricular fluid from parkinsonian patients. J Neurol Sci 139(1):141–148

    Article  PubMed  CAS  Google Scholar 

  • McCabe DP, Roediger HL et al (2010) The relationship between working memory capacity and executive functioning: evidence for a common executive attention construct. Neuropsychology 24(2):222–243

    Article  PubMed  Google Scholar 

  • Mehta MA, Riedel WJ (2006) Dopaminergic enhancement of cognitive function. Curr Pharm Des 12(20):2487–2500

    Article  PubMed  CAS  Google Scholar 

  • Michelhaugh SK, Fiskerstrand C et al (2001) The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 79(5):1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Dreisbach G et al (2007) Dopamine and cognitive control: the influence of spontaneous eyeblink rate, DRD4 exon III polymorphism and gender on flexibility in set-shifting. Brain Res 1131(1):155–162

    Article  PubMed  Google Scholar 

  • Neville MJ, Johnstone EC et al (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 23(6):540–545

    Article  PubMed  CAS  Google Scholar 

  • Ni X, Trakalo JM et al (2002) Linkage disequilibrium between dopamine D1 receptor gene (DRD1) and bipolar disorder. Biol Psychiatry 52(12):1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Okuyama Y, Ishiguro H et al (1999) A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem Biophys Res Commun 258(2):292–295

    Article  PubMed  CAS  Google Scholar 

  • Ritchie T, Noble EP (2003) Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 28(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53(4):1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Schmiedek F, Hildebrandt A et al (2009) Complex span versus updating tasks of working memory: the gap is not that deep. J Exp Psychol Learn Mem Cogn 35(4):1089–1096

    Article  PubMed  Google Scholar 

  • Sims VK, Hegarty M (1997) Mental animation in the visuospatial sketchpad: evidence from dual-task studies. Mem Cogn 25(3):321–332

    Article  CAS  Google Scholar 

  • Smillie LD, Cooper AJ et al (2010) Variation in DRD2 dopamine gene predicts extraverted personality. Neurosci Lett 468(3):234–237

    Article  PubMed  CAS  Google Scholar 

  • Stefanis NC, van Os J et al (2005) Effect of COMT Val158Met polymorphism on the continuous performance test, identical pairs version: tuning rather than improving performance. Am J Psychiatry 162(9):1752–1754

    Article  PubMed  Google Scholar 

  • Stins JF, de Sonneville LM et al (2005) Heritability of selective attention and working memory in preschoolers. Behav Genet 35(4):407–416

    Article  PubMed  CAS  Google Scholar 

  • Tan EK, Tan Y et al (2003) Dopamine D2 receptor TaqIA and TaqIB polymorphisms in Parkinson’s disease. Mov Disord 18(5):593–595

    Article  PubMed  Google Scholar 

  • Tarazi FI, Zhang K et al (2004) Dopamine D4 receptors: beyond schizophrenia. J Recept Signal Transduct Res 24(3):131–147

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Thomas N et al (1997) D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 7(6):479–484

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, O’Donnell P (2007) Dopamine modulation of prefrontal cortical interneurons changes during adolescence. Cereb Cortex 17(5):1235–1240

    Article  PubMed  Google Scholar 

  • Tura E, Turner JA et al (2008) Multivariate analyses suggest genetic impacts on neurocircuitry in schizophrenia. Neuroreport 19(6):603–607

    Article  PubMed  Google Scholar 

  • van Asselen M, Kessels RP et al (2006) Brain areas involved in spatial working memory. Neuropsychologia 44(7):1185–1194

    Article  PubMed  Google Scholar 

  • Wu SN, Gao R et al (2006) Association of DRD2 polymorphisms and chlorpromazine-induced extrapyramidal syndrome in Chinese schizophrenic patients. Acta Pharmacol Sin 27(8):966–970

    Article  PubMed  CAS  Google Scholar 

  • Xue G, Dong Q et al (2004) Mapping of verbal working memory in nonfluent Chinese-English bilinguals with functional MRI. Neuroimage 22(1):1–10

    Article  PubMed  Google Scholar 

  • Zhang Y, Bertolino A et al (2007) Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci USA 104(51):20552–20557

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZS, Lui S et al (2008) A functional magnetic resonance imaging study on digital working memory task. Acta Academiae Medicinae Militaris Tertiae 30(16):1575–1577

    Google Scholar 

Download references

Acknowledgments

We would like to thank all the participants and researchers in this study. Funding for this study was supported by National Natural Science Foundation of China (No. 30970967) and Special Prophase Project on Basic Research of the National Department of Science and Technology (2007CB516702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, P., Zhang, H., Chi, W. et al. An Association Study on the Polymorphisms of Dopaminergic Genes with Working Memory in a Healthy Chinese Han Population. Cell Mol Neurobiol 32, 1011–1019 (2012). https://doi.org/10.1007/s10571-012-9817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9817-3

Keywords

Navigation