Skip to main content
Log in

Neuronal sources of theta rhythm in the entorhinal cortex of the rat

I. Laminar distribution of theta field potentials

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The laminar distribution of theta (θ) field potentials in the entorhinal cortex (EC) was investigated in paralysed and locally anesthetized rats injected with physostigmine in order to induce θ rhythm. Electrode penetrations through the medial, intermediate and lateral subdivisions of the EC showed in all cases: 1. the presence of θ rhythm from layer VI to layer III approximately in phase with CA1 θ rhythm; 2. an amplitude minimum between the outer third of layer III and the inner half of layer I; and 3. a phase-reversed θ rhythm in layers II-I with an amplitude maximum in the outer half of layer I. Results indicate the existence of neuronal sources of θ rhythm in the EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adey WR, Dunlow CW, Hendrix CE (1960) Hippocampal slow waves: distribution and phase relations in the course of approach learning. Arch Neurol 3: 74–90

    Google Scholar 

  • Alonso A, García-Austt E (1987) Neuronal sources of theta rhythm in the entorhinal cortex of the rat. II. Phase relations between unit discharges and theta field potentials. Exp Brain Res 67: 502–509

    Google Scholar 

  • Alonso A, Gaztelu JM, Buño W Jr, García-Austt E (1987) Crosscorrelation analysis of septohippocampal neurons during θ rhythm. Brain Res (in press)

  • Alonso A, Köhler C (1984) A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. J Comp Neurol 275: 327–343

    Google Scholar 

  • Andersen P, Holmqvist B, Voorhoeve PE (1966a) Entorhinal activation of dentate granule cells. Acta Physiol Scand 66: 448–460

    Google Scholar 

  • Andersen P, Holmqvist B, Voorhoeve PE (1966b) Excitatory synapses on hippocampal apical dendrites activated by entorhinal stimulation. Acta Physiol Scand 66: 461–472

    Google Scholar 

  • Apostol G, Creutzfeldt OD (1974) Crosscorrelation between the activity of septal units and hippocampal EEG during arousal. Brain Res 67: 65–75

    Google Scholar 

  • Baisden RH, Woodruff ML, Hoover DB (1984) Cholinergic and non-cholinergic septo-hippocampal projections. A doublelabel horseradish peroxidase-acetylcholinesterase study in the rabbit. Brain Res 290: 146–151

    Google Scholar 

  • Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures. Wiley & Sons, New York

    Google Scholar 

  • Blackstad TW (1956) Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 105: 417–437

    Google Scholar 

  • Bland BH, Andersen P, Ganes T (1975) Two generators of hippocampal theta activity in rabbits. Brain Res 94: 199–218

    Google Scholar 

  • Bland SK, Bland BH (1986) Medial septal modulation of hippocampal theta cell discharges. Brain Res 375: 102–116

    Google Scholar 

  • Bland BH, Whishaw IQ (1976) Generators and topography of hippocampal theta (RSA) in the anaesthetized and freely moving rat. Brain Res 118: 259–280

    Google Scholar 

  • Boeijinga PH, Van Groen Th (1984) Inputs from the olfactory bulb to the entorhinal cortex in the cat. II. Physiological studies. Exp Brain Res 57: 40–48

    Google Scholar 

  • Buño W Jr, Fuentes J, Segundo JP (1978) Crayfish stretchreceptor organs: effects of length-steps with and without perturbations. Biol Cybern 31: 99–110

    Google Scholar 

  • Buzsáki G, Leung L-WS, Vanderwolf CH (1983) Cellular base of hippocampal EEG in the behaving rat. Brain Res Rev 6: 139–171

    Google Scholar 

  • Buzsáki G, Czopf J, Kondákor I, Kellény L (1986) Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. Brain Res 365: 125–137

    Google Scholar 

  • Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Wiley & Sons, New York

    Google Scholar 

  • Faingold CL, Hoffmann WE, Caspary DM (1984) Effects of iontophoretic application of convulsants on the sensory responses of neurons in the brain-stem reticular formation. Electroencephalogr Clin Neurophysiol 58: 55–64

    Google Scholar 

  • Feenstra BWA, Holsheimer J (1979) Dipole-like neuronal sources of theta rhythm in dorsal hippocampus, dentate gyrus and cingulate cortex of the urethane-anaesthetized rat. Electroencephalogr Clin Neurophysiol 47: 532–538

    Google Scholar 

  • Gaztelu JM, Buño W Jr (1982) Septo-hippocampal relationships during EEG theta rhythm. Electroencephalogr Clin Neurophysiol 54: 375–387

    Google Scholar 

  • Gaztelu JM, Dajas F, Sanchez-Arroyos R, García-Austt E (1981) [14C]2-deoxyglucosa mapping of active hippocampal areas during theta rhythm induced by curarimimetics in the rat. Neurosci Lett Suppl 7: 46

    Google Scholar 

  • Gogolak G, Stumpf CH, Petsche H, Stere S (1968) The firing pattern of septal neurons and the form of the hippocampal theta wave. Brain Res 7: 201–207

    Google Scholar 

  • Green JD, Arduini AA (1954) Hippocampal electrical activity in arousal. J Neurophysiol 17: 403–420

    Google Scholar 

  • Green KF, Rawlins JNP (1979) Hippocampal theta in rats under urethane: generators and phase relations. Electroenchephalogr Clin Neurophysiol 47: 420–429

    Google Scholar 

  • Hellon RI (1971) The marking of electrode tip positions in nervous tissue. J Physiol (Lond) 214: 12P

  • Herreras O, Solis JM, Lerma J (1986) Abolition of CA1 population spike by sensory stimulation. Exp Brain Res 61: 654–657

    Google Scholar 

  • Holmes JE, Adey WR (1960) Electrical activity of the entorhinal cortex during conditioned behaviour. Am J Physiol 199: 741–744

    Google Scholar 

  • Holsheimer J, Stok CJ, Lopes da Silva FH (1983) Theta rhythm related hippocampal cell discharges in the urethane anaesthetized rat: evidence for a predominant entorhinal input. Electroencephalogr Clin Neurophysiol 55: 464–467

    Google Scholar 

  • Köhler C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol 169: 41–44

    Google Scholar 

  • Krettek JE, Price JL (1977) Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat. J Comp Neurol 177: 723–752

    Google Scholar 

  • Leung L-WS (1984) Model of gradual phase shift of theta rhythm in the rat. J Neurophysiol 52: 1051–1065

    Google Scholar 

  • Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol (Lpz) 5: 381–438

    Google Scholar 

  • Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol (Lpz) 46: 113–177

    Google Scholar 

  • Macadar O, Roig JA, Monti JM, Budelli R (1970) The functional relationship between septal and hippocampal unit activity and hippocampal theta rhythm. Physiol Behav 5: 1443–1449

    Google Scholar 

  • Mitchell SJ, Ranck JB Jr (1980) Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Res 178: 49–66

    Google Scholar 

  • Mitchell SJ, Rawlins JNP, Steward O, Olton DS (1982) Medial septal area lesions disrupt θ rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 2: 292–302

    Google Scholar 

  • Petsche H, Stumpf CH, Gogolak G (1962) The significance of the rabbit septum as a relay station between the midbrain and hippocampus. I. The control of hippocampal arousal activity by the septum cells. Electroencephalogr Clin Neurophysiol 14: 202–211

    Google Scholar 

  • Ramön y Cajal S (1911) Histologie du système nerveux l'homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Rawlins JNP, Feldon J, Gray JA (1979) Septo-hippocampal connections and the hippocampal theta rhythm. Exp Brain Res 37: 49–63

    Google Scholar 

  • Schwarz SP, Coleman PD (1981) Neurons of origin of the perforant path. Exp Neurol 74: 305–312

    Google Scholar 

  • Steward O (1976) Topographic organization of the projections from the entorhinal area to hippocampal formation of the rat. J Comp Neurol 167: 285–314

    Google Scholar 

  • Steward O, Scoville SA (1976) The cells of origin of entorhinal afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169: 347–370

    Google Scholar 

  • Vanderwolf CH, Leung L-WS (1983) Hippocampal rhythmical slow activity: a brief history and the effects of entorhinal lesions and phencyclidine. In: Scifert W (ed) Neurobiology of the hippocampus. Academic Press, London, pp 275–302

    Google Scholar 

  • Winson J (1974) Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalogr Clin Neurophysiol 26: 291–301

    Google Scholar 

  • Winson J (1976a) Hippocampal theta rhythm. I. Depth profiles in the curarized rat. Brain Res 103: 57–70

    Google Scholar 

  • Winson J (1976b) Hippocampal theta rhythm. II. Depth profiles in the freely moving rat. Brain Res 103: 71–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, A., García-Austt, E. Neuronal sources of theta rhythm in the entorhinal cortex of the rat. Exp Brain Res 67, 493–501 (1987). https://doi.org/10.1007/BF00247282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00247282

Key words

Navigation