Skip to main content
Log in

Time course of the effects of the serotonin-selective reuptake inhibitor sertraline on central and peripheral serotonin neurochemistry in the rhesus monkey

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Fundamental questions remain regarding the actions of the selective serotonin reuptake inhibitors (SSRIs).

Objectives

To examine the time course of central and peripheral neurochemical effects of sertraline (SER) in non-human primates.

Methods

SER (20 mg/kg, p.o.) or placebo were administered daily for 4 weeks to two groups of six young adult male rhesus monkeys. Both groups received placebo during a 3-week baseline lead-in period and for 6 weeks after discontinuation. Blood and cisternal cerebrospinal fluid (cCSF) samples were obtained on days −21, −14, −7, 0, +3, +7, +14, +21, +28, +35 and +70.

Results

In animals receiving SER, mean (±SD) levels of cCSF serotonin (5-HT) increased from 38.6±9.0 pg/ml at baseline to 128±46.4 pg/ml during treatment (paired t=4.17, P=0.014). Concentrations of cCSF 5-HT were 290% of baseline on day 0 (+3 h), ranged from 260% to 436% of baseline during treatment, and returned to baseline 7 days after discontinuation. Levels of cCSF 5-hydroxyindoleacetic acid declined to 51±2.0% of baseline by day +3 and remained at similarly reduced levels during treatment. Plasma drug levels and decrements in platelet 5-HT were similar to those seen in patients.

Conclusions

SER rapidly and substantially increases cCSF levels of 5-HT in primates, the extent of elevation is relatively constant during prolonged administration, and values return to baseline shortly after discontinuation. The results suggest that response latency for SSRIs in depression is not due to gradually increasing brain extracellular fluid 5-HT levels and tend not to support theories that posit SSRI response latency as being due to autoreceptor desensitization, transporter downregulation, or drug accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson GM, Teff KL, Young SN (1987a) Serotonin in cisternal cerebrospinal fluid of the rat: measurement and use as an index of functionally active serotonin. Life Sci 40:2253–2260

    Article  CAS  PubMed  Google Scholar 

  • Anderson GM, Feibel FC, Cohen DJ (1987b) Determination of serotonin in whole blood, PRP, PPP and plasma ultrafiltrate. Life Sci 40:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Anderson GM, Mefford IN, Tolliver TJ, Riddle MA, Ocame DM, Leckman JF, Cohen DJ (1990) Serotonin in human lumbar cerebrospinal fluid: a reassessment. Life Sci 46:247–255

    Article  CAS  PubMed  Google Scholar 

  • Anderson GM, Bennett AJ, Weld KP, Pushkas JG, Ocame DM, Higley JD (2002) Serotonin in cisternal cerebrospinal fluid of rhesus monkeys: basal levels and effects of sertraline administration. Psychopharmacology 161:95–99

    Article  CAS  PubMed  Google Scholar 

  • Aronoff GR, Bergstrom RF, Poltratz ST, Sloan RS, Wolen RL, Lemberger L (1984) Fluoxetine kinetics and protein binding in normal and impaired renal function. Clin Pharmacol Ther 36:138–144

    CAS  PubMed  Google Scholar 

  • Barr CS, Newman TK, Shannon C, Parker C, Dvoskin RL, Becker ML, Schwandt M, Champoux M, Lesch KP, Goldman D, Suomi SJ, Higley JD (2004) Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biol Psychiatry 55:733–738

    Article  CAS  PubMed  Google Scholar 

  • Bel N, Artigas F (1992) Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 278:1064–1072

    Google Scholar 

  • Bel N, Artigas F (1993) Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphe nuclei. Synapse 15:243–245

    CAS  PubMed  Google Scholar 

  • Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A (1999) Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494–10501

    CAS  PubMed  Google Scholar 

  • Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A (2002) Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22:6766–6772

    CAS  PubMed  Google Scholar 

  • Bennett AJ, Lesch KP, Heils A, Long JC, Lorenz JG, Shoaf SE et al (2002) Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry 7:118–122

    Article  CAS  PubMed  Google Scholar 

  • Black K, Shea C, Dursun S, Kutcher S (2000) Selective serotonin reuptake inhibitor discontinuation syndrome: proposed diagnostic criteria. J Psychiatry Neurosci 25:255–261

    CAS  PubMed  Google Scholar 

  • Blier P, De Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    Article  CAS  PubMed  Google Scholar 

  • Brammer GL, Raleigh MJ, McGuire MT, Rubinstein EH (1987) Comparison of ketamine, physical restraint, halothane and pentobarbital: lack of influence on serotonergic measures in monkeys and rats. Neuropharmacology 26:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Bunin MA, Wightman RM (1999) Paracrine neurotransmission in the CNS: involvement of 5-HT. Trends Neurosci 22:377–382

    Article  CAS  PubMed  Google Scholar 

  • Carpenter L, Anderson GM, Siniscalchi JM, Chappell PB, Price LP (2003) Acute changes in cerebrospinal fluid 5-HIAA following oral paroxetine challenge in healthy humans. Neuropsychopharmacology 28:339–347

    Article  CAS  PubMed  Google Scholar 

  • Catterson ML, Preskorn SH (1996) Pharmacokinetics of selective serotonin reuptake inhibitors: clinical relevance. Pharmacol Toxicol 78:203–208

    CAS  PubMed  Google Scholar 

  • Clarke AS, Ebert MH, Schmidt DE, McKinney WT, Kraemer GW (1999) Biogenic amine activity in response to fluoxetine and desipramine in differentially reared rhesus monkeys. Biol Psychiatry 46:221–228

    Article  CAS  PubMed  Google Scholar 

  • Collins JM, Dedrick RL (1983) Distributed model for drug delivery to CSF and brain tissue. Am J Physiol 245:R303–R310

    CAS  PubMed  Google Scholar 

  • DeVane CL, Liston HL, Markowitz JS (2002) Clinical pharmacokinetics of sertraline. Clin Pharmacokinet 41:1247–1266

    CAS  PubMed  Google Scholar 

  • Eccleston D, Ashcroft GW, Moir ATB, Parker-Rhodes A, Lutz W, Mahoney DP (1968) A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid. J Neurochem 15:947–957

    CAS  PubMed  Google Scholar 

  • Epperson N, Czarkowski KA, Ward-O’Brien D, Weiss E, Gueorguieva R, Jatlow P, Anderson GM (2001) Maternal sertraline treatment and serotonin transport in breast-feeding mother-infant pairs. Am J Psychiatry. 158:1631–1637

    Article  CAS  PubMed  Google Scholar 

  • Frazer A, Benmansour S (2002) Delayed pharmacological effects of antidepressants. Mol Psychiatry 7:S23–S28

    Article  CAS  PubMed  Google Scholar 

  • Gur E, Dremencov E, Lerer B, Newman ME (1999a) Venlafaxine: acute and chronic effects on 5-hydroxytryptamine levels in rat brain in vivo. Eur J Pharmacol 372:17–24

    Article  CAS  PubMed  Google Scholar 

  • Gur E, Lerer B, Newman ME (1999b) Chronic clomipramine and triiodothyronine increase serotonin levels in rat frontal cortex in vivo: relationship to serotonin autoreceptor activity. J Pharmacol Exp Ther 288:81–87

    CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M (2000) The use of microdialysis in CNS drug delivery studies pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev 45:283–294

    Article  CAS  PubMed  Google Scholar 

  • Higley JD, Suomi SJ, Linnoila M (1991) Development, rearing history, and sex differences in CSF monoamine metabolites. Psychopharmacology 103:551–556

    CAS  PubMed  Google Scholar 

  • Higley JD, Suomi SJ, Linnoila M (1992) A longitudinal study of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys: effects of early experience, age, sex and stress on continuity of interindividual differences. Biol Psychiatry 32:127–145

    Article  CAS  PubMed  Google Scholar 

  • Invernizzi R, Bramante M, Samanin R (1996) Role of 5-HT(1A) receptors in the effects of acute and chronic fluoxetine on extracellular serotonin in the frontal cortex. Pharmacol Biochem Behav 54:143–147

    Article  CAS  PubMed  Google Scholar 

  • Katz MM, Koslow SH, Frazer A (1997) Onset of antidepressant activity: reexamining the structure of depression and multiple actions of drugs. Depress Anxiety 4:257–267

    Article  CAS  Google Scholar 

  • Kihara T, Ikeda M (1995) Effects of duloxetine, a new serotonin and norepinephrine uptake inhibitor, on extracellular monoamine levels in rat frontal cortex. J Pharmacol Exp Ther 272:177–183

    CAS  PubMed  Google Scholar 

  • Kornhuber J, Retz W, Rieder P (1995) Slow accumulation of psychotropic substances in the human brain. Relationship to therapeutic latency of neuropletic and antidepressant drugs? J Neural Transm 46:315–323

    CAS  Google Scholar 

  • Landen M, Eriksson E (2003) How does premenstrual dysphoric disorder relate to depression and anxiety disorders? Depress Anxiety 17:122–129

    Article  PubMed  Google Scholar 

  • Martensson B, Nyberg S, Toresson G, Brodin E, Bertilsson L (1989) Fluoxetine treatment of depression. Acta Scand Psychiatr 79:589–596

    Google Scholar 

  • Matsumoto M, Togashi H, Yoshioka M, Morii K, Hirokami M, Tochihara M, Ikeda T, Saito Y, Saito H (1991) Significant correlation between cerebrospinal fluid and brain levels of norepinephrine, serotonin, and acetylcholine in anesthetized rats. Life Sci 48:823–829

    Article  CAS  PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 16:826–835

    Article  Google Scholar 

  • Mulder EJ, Anderson GM, Kema IP, Minderaa RB (2002) Reactivity of whole blood serotonin. Biol Psychiatry 51:266–268

    Article  CAS  PubMed  Google Scholar 

  • Nutt DJ (2003) Death and dependence: current controversies over the selective serotonin reuptake inhibitors. J Psychopharmacol 17:355–364

    Article  CAS  PubMed  Google Scholar 

  • Perry KW, Fuller RW (1992) Effect of fluoxetine on serotonin and dopamine concentration in microdialysis fluid from rat striatum. Life Sci 50:1683–1690

    Article  CAS  PubMed  Google Scholar 

  • Renshaw P, Guimaraes A, Fava M, Rosenbaum J, Pearlman J et al (1992) Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration. Am J Psychiatry 149:1592–1594

    CAS  PubMed  Google Scholar 

  • Riddle MA, Anderson GM, McIntosh S, Harcherik DF, Shaywitz BA, Cohen DJ (1986) Cerebrospinal fluid monoamine precursor and metabolite levels in children treated for leukemia: age and sex effects and individual variability. Biol Psychiatry 21:69–83

    Article  CAS  PubMed  Google Scholar 

  • Rollema H, Clarke T, Sprouse JS, Schulz DW (1996) Combined administration of a 5-hydroxytryptamine [5-HT(1D)] antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in Guinea pig hypothalamus in vivo. J Neurochem 67:2204–2207

    Google Scholar 

  • Ronfeld RA, Tremaine LM, Wilner KD (1997) Pharmacokinetics of sertraline and its N-demethyl metabolite in elderly and young male and female volunteers. Clin Pharmacokinet 32(Suppl 1):22–30

    CAS  PubMed  Google Scholar 

  • Rosen R, Menza M, Lane R (1999) Effects of SSRIs on sexual dysfunction: critical review. J Clin Psychopharmacol 19:67–85

    Article  CAS  PubMed  Google Scholar 

  • Rutter J, Gundlah C, Auerbach SB (1994) Increase in extracellular serotonin produced by uptake inhibitors is enhanced after chronic treatment with fluoxetine. Neurosci Lett 171:183–186

    Article  CAS  PubMed  Google Scholar 

  • Sarkissian CF, Wurtman RJ, Morse AN, Gleason R (1990) Effects of fluoxetine or d-fenfluramine on serotonin release from, and levels in, rat frontal cortex. Brain Res 529:294–301

    Article  CAS  PubMed  Google Scholar 

  • Schatzberg AF, Haddad P, Kaplan EM, Lejoyeux M, Rosenbaum JF, Young AH, Zajecka J (1997) Serotonin reuptake inhibitor discontinuation syndrome: a hypothetical definition. Discontinuation consensus panel. J Clin Psychiatry 58(Suppl 7):5–10

    CAS  Google Scholar 

  • Selim M, Bradberry CW (1996) Effect of ethanol on extracellular 5-HT and glutamate in the nucleus accumbens and prefrontal cortex: comparison between the Lewis and Fischer 344 rat strains. Brain Res 716:157–164

    Article  CAS  PubMed  Google Scholar 

  • Sheline Y, Bardgett ME, Csernansky JG (1997) Correlated reductions in cerebrospinal fluid 5-HIAA and MHPG concentrations after treatment with selective serotonin reuptake inhibitors. J Clin Psychopharmacol 17:11–14

    Article  CAS  PubMed  Google Scholar 

  • Smith T, Kuczenski R, George-Friedman K, Malley JD, Foote SL (2000) In vivo microdialysis assessment of extracellular serotonin and dopamine levels in awake monkeys during sustained fluoxetine administration. Synapse 38:460–470

    Article  CAS  PubMed  Google Scholar 

  • Sprouse J, Clarke T, Reynolds L, Heym J, Rollema H (1996) Comparison of the effects of sertraline and its metabolite desmethylsertraline on blockade of central 5-HT reuptake in vivo. Neuropsychopharmacology 14:225–231

    Article  Google Scholar 

  • Sprouse J, Braselton J, Reynolds L, Clarke T, Rollema H (2001) Activation of postsynaptic 5-HT(1A) receptors by fluoxetine despite the loss of firing-dependent serotonergic input: electrophysiological and neurochemical studies. Synapse 41:49–57

    Article  CAS  PubMed  Google Scholar 

  • Steiner M, Pearlstein T (2000) Premenstrual dysphoria and the serotonin system: pathophysiology and treatment. J Clin Psychiatry 61(Suppl 12):17–21

    Google Scholar 

  • Walker MC, Tong X, Perry H, Alavijeh MS, Patsalos PN (2000) Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol 130:242–248

    CAS  PubMed  Google Scholar 

  • Wood JH (1980) Neurobiology of cerebrospinal fluid. Plenum, New York, pp 1–16

    Google Scholar 

  • Yonkers K (1997) The association between premenstrual dysphoric disorder and other mood disorders. J Clin Psychiatry 58(Suppl 15):19–25

    Google Scholar 

  • Zhou FC, Tao-Cheng J, Segu L, Patel T, Wang Y (1998) Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain Res 805:241–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the National Institute of Mental Health, the National Institute of Alcohol Abuse & Alcoholism, and the Gettner Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, G.M., Barr, C.S., Lindell, S. et al. Time course of the effects of the serotonin-selective reuptake inhibitor sertraline on central and peripheral serotonin neurochemistry in the rhesus monkey. Psychopharmacology 178, 339–346 (2005). https://doi.org/10.1007/s00213-004-2011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2011-7

Keywords

Navigation