Skip to main content
Log in

Divergent acute and chronic modulation of glutamatergic postsynaptic density genes expression by the antipsychotics haloperidol and sertindole

  • original investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

A pivotal role for glutamate in the pathophysiology and treatment of schizophrenia has been suggested. Few reports have investigated the impact of antipsychotics on postsynaptic density (PSD) molecules involved in glutamatergic transmission and synaptic remodeling. Homer is a key PSD molecule putatively implicated in schizophrenia.

Objectives

We studied the effect, in acute and chronic paradigms, of a first and a second generation antipsychotic (haloperidol and sertindole, respectively) on the expression of Homer1a and Homer-interacting PSD molecules.

Results

In the acute paradigm, Homer1a expression was induced by haloperidol but not sertindole in the striatum, consistent with the less propensity of sertindole to affect nigrostriatal neurotransmission. The profile of expression of two other inducible genes, Ania3 and Arc, was highly similar to Homer1a. In the cortex, haloperidol reduced Homer1a and induced Ania3. In the chronic paradigm, striatal expression of Homer1a and Ania3 resembled that observed in the acute paradigm. In the cortex, haloperidol induced Homer1a, while sertindole did not. Homer1b expression was increased by haloperidol in the striatum and cortex whereas sertindole selectively induced Homer1b in the cortex. The expression of mGluR5 was increased by both antipsychotics. A modulation by haloperidol was also seen for PSD-95 and αCaMKII.

Conclusions

These results suggest that haloperidol and sertindole may significantly modulate glutamatergic transcripts of the postsynaptic density. Sertindole induces constitutive genes in the cortex predominantly, which may correlate with its propensity to improve cognitive functions. Haloperidol preferentially modulates gene expression in the striatum, consistent with its action at nigrostriatal projections and its propensity to give motor side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambesi-Impiombato A, D’Urso G, Muscettola G, de Bartolomeis A (2003) Method for quantitative in situ hybridization histochemistry and image analysis applied for Homer1a gene expression in rat brain. Brain Res Brain Res Protoc 11:189–196

    Article  CAS  PubMed  Google Scholar 

  • Ambesi-Impiombato A, Panariello F, Dell’aversano C, Tomasetti C, Muscettola G, de Bartolomeis A (2007) Differential expression of Homer 1 gene by acute and chronic administration of antipsychotics and dopamine transporter inhibitors in the rat forebrain. Synapse 61:429–439

    Article  CAS  PubMed  Google Scholar 

  • Andersen MP, Pouzet B (2001) Effects of acute versus chronic treatment with typical or atypical antipsychotics on d-amphetamine-induced sensorimotor gating deficits in rats. Psychopharmacology (Berl) 156:291–304

    Article  CAS  Google Scholar 

  • Ango F, Pin JP, Tu JC, Xiao B, Worley PF, Bockaert J, Fagni L (2000) Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by homer1 proteins and neuronal excitation. J Neurosci 20:8710–8716

    CAS  PubMed  Google Scholar 

  • Ango F, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2001) Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411:962–965

    Article  CAS  PubMed  Google Scholar 

  • Ango F, Robbe D, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2002) Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol Cell Neurosci 20:323–329

    Article  CAS  PubMed  Google Scholar 

  • Arnt J (1995) Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of D-amphetamine. Eur J Pharmacol 283:55–62

    Article  CAS  PubMed  Google Scholar 

  • Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    Article  CAS  PubMed  Google Scholar 

  • Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288

    Article  CAS  PubMed  Google Scholar 

  • Broberg BV, Glenthoj BY, Dias R, Larsen DB, Olsen CK (2009) Reversal of cognitive deficits by an ampakine (CX516) and sertindole in two animal models of schizophrenia—sub-chronic and early postnatal PCP treatment in attentional set-shifting. Psychopharmacology (Berl) 206(4):631–640

    Article  CAS  Google Scholar 

  • Cotterly L, Beverley JA, Yano M, Steiner H (2007) Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: differential effects on zif 268 and homer 1a. Eur J Neurosci 25:3617–3628

    Article  PubMed  Google Scholar 

  • Critchlow HM, Maycox PR, Skepper JN, Krylova O (2006) Clozapine and haloperidol differentially regulate dendritic spine formation and synaptogenesis in rat hippocampal neurons. Mol Cell Neurosci 32:356–365

    Article  CAS  PubMed  Google Scholar 

  • de Bartolomeis A, Aloj L, Ambesi-Impiombato A, Bravi D, Caraco C, Muscettola G, Barone P (2002) Acute administration of antipsychotics modulates Homer striatal gene expression differentially. Brain Res Mol Brain Res 98:124–129

    Article  PubMed  Google Scholar 

  • Diagana TT, Thomas U, Prokopenko SN, Xiao B, Worley PF, Thomas JB (2002) Mutation of Drosophila homer disrupts control of locomotor activity and behavioral plasticity. J Neurosci 22:428–436

    CAS  PubMed  Google Scholar 

  • Didriksen M, Kreilgaard M, Arnt J (2006) Sertindole, in contrast to clozapine and olanzapine, does not disrupt water maze performance after acute or chronic treatment. Eur J Pharmacol 542:108–115

    Article  CAS  PubMed  Google Scholar 

  • Didriksen M, Skarsfeldt T, Arnt J (2007) Reversal of PCP-induced learning and memory deficits in the Morris’ water maze by sertindole and other antipsychotics. Psychopharmacology (Berl) 193:225–233

    Article  CAS  Google Scholar 

  • Fumagalli F, Frasca A, Racagni G, Riva MA (2008) Dynamic regulation of glutamatergic postsynaptic activity in rat prefrontal cortex by repeated administration of antipsychotic drugs. Mol Pharmacol 73:1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli F, Frasca A, Racagni G, Riva MA (2009) Antipsychotic drugs modulate Arc expression in the rat brain. Eur Neuropsychopharmacol 19:109–115

    Article  CAS  PubMed  Google Scholar 

  • Gallhofer B, Jaanson P, Mittoux A, Tanghoj P, Lis S, Krieger S (2007) Course of recovery of cognitive impairment in patients with schizophrenia: a randomised double-blind study comparing sertindole and haloperidol. Pharmacopsychiatry 40:275–286

    Article  CAS  PubMed  Google Scholar 

  • Gao XM, Sakai K, Tamminga CA (1998) Chronic olanzapine or sertindole treatment results in reduced oral chewing movements in rats compared to haloperidol. Neuropsychopharmacology 19:428–433

    Article  CAS  PubMed  Google Scholar 

  • Gao K, Muzina D, Gajwani P, Calabrese JR (2006) Efficacy of typical and atypical antipsychotics for primary and comorbid anxiety symptoms or disorders: a review. J Clin Psychiatry 67:1327–1340

    Article  CAS  PubMed  Google Scholar 

  • Gardoni F, Frasca A, Zianni E, Riva MA, Di Luca M, Fumagalli F (2008) Repeated treatment with haloperidol, but not olanzapine, alters synaptic NMDA receptor composition in rat striatum. Eur Neuropsychopharmacol 18:531–534

    Article  CAS  PubMed  Google Scholar 

  • Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ, Arnold SE (2006) Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12:824–828

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Fujita Y, Shimizu E, Iyo M (2005) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol 519:114–117

    Article  CAS  PubMed  Google Scholar 

  • Hietala J, Kuonnamaki M, Palvimaki EP, Laakso A, Majasuo H, Syvalahti E (2001) Sertindole is a serotonin 5-HT2c inverse agonist and decreases agonist but not antagonist binding to 5-HT2c receptors after chronic treatment. Psychopharmacology (Berl) 157:180–187

    Article  CAS  Google Scholar 

  • Iasevoli F, Tomasetti C, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A (2009) Dopamine receptor subtypes contribution to Homer1a induction: insights into antipsychotic molecular action. Prog Neuropsychopharmacol Biol Psychiatry 33:813–821

    Article  CAS  PubMed  Google Scholar 

  • Iasevoli F, Ambesi-Impiombato A, Fiore G, Panariello F, Muscettola G, de Bartolomeis A (2010a) Pattern of acute induction of Homer1a gene is preserved after chronic treatment with first and second-generation antipsychotics: effect of short-term drug discontinuation and comparison with Homer1a-interacting genes. J Psychopharmacol doi:10.1177/0269881109358199

  • Iasevoli F, Fiore G, Cicale M, Muscettola G, de Bartolomeis A (2010b) Haloperidol induces higher Homer1a expression than risperidone, olanzapine and sulpiride in striatal sub-regions. Psychiatry Res 177:255–260

    Article  CAS  PubMed  Google Scholar 

  • Kammermeier PJ (2008) Endogenous homer proteins regulate metabotropic glutamate receptor signaling in neurons. J Neurosci 28:8560–8567

    Article  CAS  PubMed  Google Scholar 

  • Kammermeier PJ, Worley PF (2007) Homer 1a uncouples metabotropic glutamate receptor 5 from postsynaptic effectors. Proc Natl Acad Sci USA 104:6055–6060

    Article  CAS  PubMed  Google Scholar 

  • Kammermeier PJ, Xiao B, Tu JC, Worley PF, Ikeda SR (2000) Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J Neurosci 20:7238–7245

    CAS  PubMed  Google Scholar 

  • Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34:1578–1589

    Article  CAS  PubMed  Google Scholar 

  • Kasper S, Tauscher J, Kufferle B, Barnas C, Hesselmann B, Asenbaum S, Podreka I, Brucke T (1998) Sertindole and dopamine D2 receptor occupancy in comparison to risperidone, clozapine and haloperidol—a 123I-IBZM SPECT study. Psychopharmacology (Berl) 136:367–373

    Article  CAS  Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97:153–179

    Article  CAS  PubMed  Google Scholar 

  • Lominac KD, Oleson EB, Pava M, Klugmann M, Schwarz MK, Seeburg PH, During MJ, Worley PF, Kalivas PW, Szumlinski KK (2005) Distinct roles for different Homer1 isoforms in behaviors and associated prefrontal cortex function. J Neurosci 25:11586–11594

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Yang L, Tang Q, Samdani S, Zhang G, Wang JQ (2005) The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci 25:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Awad-Granko H, Ciombor KJ, Conn PJ (2002) Haloperidol-induced alteration in the physiological actions of group I mGlus in the subthalamic nucleus and the substantia nigra pars reticulata. Neuropharmacology 43:147–159

    Article  CAS  PubMed  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  CAS  PubMed  Google Scholar 

  • Mork A, Witten LM, Arnt J (2009) Effect of sertindole on extracellular dopamine, acetylcholine, and glutamate in the medial prefrontal cortex of conscious rats: a comparison with risperidone and exploration of mechanisms involved. Psychopharmacology (Berl) 206(1):39–49

    Article  Google Scholar 

  • Moutsimilli L, Farley S, El Khoury MA, Chamot C, Sibarita JB, Racine V, El Mestikawy S, Mathieu F, Dumas S, Giros B, Tzavara ET (2008) Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology 54:497–508

    Article  CAS  PubMed  Google Scholar 

  • Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31:1854–1863

    Article  CAS  PubMed  Google Scholar 

  • Ninan I, Wang RY (2003) Modulation of the ability of clozapine to facilitate NMDA- and electrically evoked responses in pyramidal cells of the rat medial prefrontal cortex by dopamine: pharmacological evidence. Eur J Neurosci 17:1306–1312

    Article  PubMed  Google Scholar 

  • Norton N, Williams HJ, Williams NM, Spurlock G, Zammit S, Jones G, Jones S, Owen R, O’Donovan MC, Owen MJ (2003) Mutation screening of the Homer gene family and association analysis in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 120B:18–21

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JA, Hasenkamp W, Horman BM, Muly EC, Hemby SE (2006) Region specific regulation of NR1 in rhesus monkeys following chronic antipsychotic drug administration. Biol Psychiatry 60:659–662

    Article  PubMed  Google Scholar 

  • Okabe S (2007) Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 34:503–518

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  • Polese D, de Serpis AA, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A (2002) Homer 1a gene expression modulation by antipsychotic drugs: involvement of the glutamate metabotropic system and effects of D-cycloserine. Neuropsychopharmacology 27:906–913

    Article  CAS  PubMed  Google Scholar 

  • Rodefer JS, Nguyen TN, Karlsson JJ, Arnt J (2008) Reversal of subchronic PCP-induced deficits in attentional set shifting in rats by sertindole and a 5-HT6 receptor antagonist: comparison among antipsychotics. Neuropsychopharmacology 33:2657–2666

    Article  CAS  PubMed  Google Scholar 

  • Rushlow WJ, Seah YH, Belliveau DJ, Rajakumar N (2005) Changes in calcineurin expression induced in the rat brain by the administration of antipsychotics. J Neurochem 94:587–596

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Gao XM, Hashimoto T, Tamminga CA (2001) Traditional and new antipsychotic drugs differentially alter neurotransmission markers in basal ganglia–thalamocortical neural pathways. Synapse 39:152–160

    Article  CAS  PubMed  Google Scholar 

  • Sala C, Roussignol G, Meldolesi J, Fagni L (2005) Key role of the postsynaptic density scaffold proteins Shank and Homer in the functional architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. J Neurosci 25:4587–4592

    Article  CAS  PubMed  Google Scholar 

  • Schwieler L, Linderholm KR, Nilsson-Todd LK, Erhardt S, Engberg G (2008) Clozapine interacts with the glycine site of the NMDA receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci 83:170–175

    Article  CAS  PubMed  Google Scholar 

  • Semba J, Sakai MW, Suhara T, Akanuma N (1999) Differential effects of acute and chronic treatment with typical and atypical neuroleptics on c-fos mRNA expression in rat forebrain regions using non-radioactive in situ hybridization. Neurochem Int 34:269–277

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Gerfen CR (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J Neurosci 13:5066–5081

    CAS  PubMed  Google Scholar 

  • Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwarz MK, Seeburg PH, Worley PF, Kalivas PW (2005) Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. Genes Brain Behav 4:273–288

    Article  CAS  PubMed  Google Scholar 

  • Szumlinski KK, Kalivas PW, Worley PF (2006) Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol 16:251–257

    Article  CAS  PubMed  Google Scholar 

  • Tappe A, Kuner R (2006) Regulation of motor performance and striatal function by synaptic scaffolding proteins of the Homer1 family. Proc Natl Acad Sci USA 103:774–779

    Article  CAS  PubMed  Google Scholar 

  • Tomasetti C, Dell’Aversano C, Iasevoli F, de Bartolomeis A (2007) Homer splice variants modulation within cortico-subcortical regions by dopamine D2 antagonists, a partial agonist, and an indirect agonist: implication for glutamatergic postsynaptic density in antipsychotics action. Neuroscience 150:144–158

    Article  CAS  PubMed  Google Scholar 

  • Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:583–592

    Article  CAS  PubMed  Google Scholar 

  • Valenti O, Grace AA (2009) Antipsychotic drug-induced increases in ventral tegmental area dopamine neuron population activity via activation of the nucleus accumbens–ventral pallidum pathway. Int J Neuropsychopharmacol 15:1–16

    Google Scholar 

  • van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10(3):207–214

    Article  PubMed  Google Scholar 

  • Zhang GC, Mao LM, Liu XY, Parelkar NK, Arora A, Yang L, Hains M, Fibuch EE, Wang JQ (2007) In vivo regulation of Homer1a expression in the striatum by cocaine. Mol Pharmacol 71:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Zimbroff DL, Kane JM, Tamminga CA, Daniel DG, Mack RJ, Wozniak PJ, Sebree TB, Wallin BA, Kashkin KB (1997) Controlled, dose-response study of sertindole and haloperidol in the treatment of schizophrenia. Sertindole Study Group. Am J Psychiatry 154:782–791

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work has been partially supported by an unrestricted grant of H Lundbeck A/S (Copenhagen, Denmark) to the Department of Neuroscience, University School of Medicine “Federico II” of Naples (Italy).

Conflicts of interest

Daniele Bravi and Jorn Arnt are employed at H Lundbeck A/S (Copenhagen, Denmark). The other authors have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea de Bartolomeis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iasevoli, F., Tomasetti, C., Marmo, F. et al. Divergent acute and chronic modulation of glutamatergic postsynaptic density genes expression by the antipsychotics haloperidol and sertindole. Psychopharmacology 212, 329–344 (2010). https://doi.org/10.1007/s00213-010-1954-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1954-0

Keywords

Navigation