Skip to main content
Log in

GC-MS-based urine metabolic profiling of autism spectrum disorders

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders resulting from multiple factors. Diagnosis is based on behavioural and developmental signs detected before 3 years of age, and there is no reliable biological marker. The purpose of this study was to evaluate the value of gas chromatography combined with mass spectroscopy (GC-MS) associated with multivariate statistical modeling to capture the global biochemical signature of autistic individuals. GC-MS urinary metabolic profiles of 26 autistic and 24 healthy children were obtained by liq/liq extraction, and were or were not subjected to an oximation step, and then were subjected to a persilylation step. These metabolic profiles were then processed by multivariate analysis, in particular orthogonal partial least-squares discriminant analysis (OPLS-DA, R 2Y(cum) = 0.97, Q 2(cum) = 0.88). Discriminating metabolites were identified. The relative concentrations of the succinate and glycolate were higher for autistic than healthy children, whereas those of hippurate, 3-hydroxyphenylacetate, vanillylhydracrylate, 3-hydroxyhippurate, 4-hydroxyphenyl-2-hydroxyacetate, 1H-indole-3-acetate, phosphate, palmitate, stearate, and 3-methyladipate were lower. Eight other metabolites, which were not identified but characterized by a retention time plus a quantifier and its qualifier ion masses, were found to differ between the two groups. Comparison of statistical models leads to the conclusion that the combination of data obtained from both derivatization techniques leads to the model best discriminating between autistic and healthy groups of children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASD:

Autism spectrum disorders

BSTFA:

bis(trimethylsilyl)trifluoroacetamide

GC-MS:

Gas chromatography combined with mass spectroscopy

NMR:

Nuclear magnetic resonance

OPLS-DA:

Orthogonal partial least-squares discriminant analysis

Par:

Pareto

PCA:

Principal component analysis

PLS-DA:

Partial least-squares discriminant analysis

TMS:

Trimethylsilylated derivative

TMSO:

Trimethylsilylated and oximated derivative

UV:

Unit variance

VIP:

Variable importance on projection

References

  1. Weintraub K (2011) The prevalence puzzle: autism counts. Nature 479(7371):22–24

    Article  CAS  Google Scholar 

  2. Falck-Ytter T, von Hofsten C (2011) How special is social looking in ASD: a review. Prog Brain Res 189:209–222

    Article  Google Scholar 

  3. Franke B, Faraone SV, Asherson P, Buitelaar J, Bau CH, Ramos-Quiroga JA, Mick E, Grevet EH, Johansson S, Haavik J, Lesch KP, Cormand B, Reif A (2011) The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol Psychiatry 17:960–987

    Article  Google Scholar 

  4. McPartland JC, Coffman M, Pelphrey KA (2011) Recent advances in understanding the neural bases of autism spectrum disorder. Curr Opin Pediatr 23(6):628–632

    Article  Google Scholar 

  5. Schaefer GB, Lutz RE (2006) Diagnostic yield in the clinical genetic evaluation of autism spectrum disorders. Genet Med 8(9):549–556

    Google Scholar 

  6. Kolvin I (1971) Studies in the childhood psychoses. I. Diagnostic criteria and classification. Br J Psychiatry 118(545):381–384

    Article  CAS  Google Scholar 

  7. Association AP (2000) Diagnostic and statistical manual of mental disorders, 4th edn. DSM-IV-TR®, Washington

    Google Scholar 

  8. Koek M, Jellema R, van der Greef J, Tas A, Hankemeier T (2011) Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 7(3):307–328

    Article  CAS  Google Scholar 

  9. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics-A review in human disease diagnosis. Anal Chim Acta 659(1–2):23–33

    Article  CAS  Google Scholar 

  10. Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, Altmaier E, Deloukas P, Erdmann J, Grundberg E, Hammond CJ, de Angelis MH, Kastenmuller G, Kottgen A, Kronenberg F, Mangino M, Meisinger C, Meitinger T, Mewes HW, Milburn MV, Prehn C, Raffler J, Ried JS, Romisch-Margl W, Samani NJ, Small KS, Wichmann HE, Zhai G, Illig T, Spector TD, Adamski J, Soranzo N, Gieger C (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362):54–60

    Article  CAS  Google Scholar 

  11. Gebregiworgis T, Powers R (2012) Application of NMR metabolomics to search for human disease biomarkers. Comb Chem High Throughput Screen 15(8):595–610

    Article  CAS  Google Scholar 

  12. Mercier P, Lewis MJ, Chang D, Baker D, Wishart DS (2011) Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR 49(3–4):307–323

    Article  CAS  Google Scholar 

  13. Garcia A, Barbas C (2011) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Methods Mol Biol 708:191–204

    Article  CAS  Google Scholar 

  14. Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK (2010) Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 9(6):2996–3004

    Article  CAS  Google Scholar 

  15. Wang L, Angley MT, Gerber JP, Sorich MJ (2011) A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers 16(7):537–552

    Article  CAS  Google Scholar 

  16. Organization WH (1991) International Classification of Diseases (ICD-10). World Health Organization, Geneva

    Google Scholar 

  17. Chan EC, Pasikanti KK, Nicholson JK (2011) Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat Protoc 6(10):1483–1499

    Article  CAS  Google Scholar 

  18. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6(6):743–760

    Article  CAS  Google Scholar 

  19. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6(2):469–479

    Article  CAS  Google Scholar 

  20. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Wer MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142–157

    Article  Google Scholar 

  21. Kemsley EK, Le Gall G, Dainty JR, Watson AD, Harvey LJ, Tapp HS, Colquhoun IJ (2007) Multivariate techniques and their application in nutrition: a metabolomics case study. Br J Nutr 98(1):1–14

    Article  CAS  Google Scholar 

  22. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58(2):109–130

    Article  CAS  Google Scholar 

  23. Trygg J (2002) O2-PLS for qualitative and quantitative analysis in multivariate calibration. J Chemom 16(6):283–293

    Article  CAS  Google Scholar 

  24. Cloarec O, Dumas ME, Trygg J, Craig A, Barton RH, Lindon JC, Nicholson JK, Holmes E (2004) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem 77(2):517–526

    Article  Google Scholar 

  25. Westerhuis J, Hoefsloot H, Smit S, Vis D, Smilde A, van Velzen E, van Duijnhoven J, van Dorsten F (2008) Assessment of PLSDA cross validation. Metabolomics 4(1):81–89

    Article  CAS  Google Scholar 

  26. Xia J, Bjorndahl TC, Tang P, Wishart DS (2008) MetaboMiner–semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinforma 9:507

    Article  Google Scholar 

  27. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–W660

    Article  CAS  Google Scholar 

  28. SIMCA-P + 12 User Guide http://wwwumetricscom/

  29. Zuppi C, Messana I, Forni F, Rossi C, Pennacchietti L, Ferrari F, Giardina B (1997) 1H NMR spectra of normal urines: reference ranges of the major metabolites. Clin Chim Acta 265(1):85–97

    Article  CAS  Google Scholar 

  30. Craig A, Cloarec O, Holmes E, Nicholson JK, Lindon JC (2006) Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem 78(7):2262–2267

    Article  CAS  Google Scholar 

  31. Krug S, Kastenmüller G, Stückler F, Rist MJ, Skurk T, Sailer M, Raffler J, Römisch-Margl W, Adamski J, Prehn C, Frank T, Engel K-H, Hofmann T, Luy B, Zimmermann R, Moritz F, Schmitt-Kopplin P, Krumsiek J, Kremer W, Huber F, Oeh U, Theis FJ, Szymczak W, Hauner H, Suhre K, Daniel H (2012) The dynamic range of the human metabolome revealed by challenges. FASEB J 26(6):2607–2619

    Article  CAS  Google Scholar 

  32. Rosenling T, Stoop MP, Attali A, Aken H, Suidgeest E, Christin C, Stingl C, Suits F, Horvatovich P, Hintzen RQ, Tuinstra T, Bischoff R, Luider TM (2012) Profiling and identification of cerebrospinal fluid proteins in a rat EAE model of multiple sclerosis. J Proteome Res 11(4):2048–2060

    Article  CAS  Google Scholar 

  33. Ratajczak HV (2011) Theoretical aspects of autism: biomarkers-a review. J Immunotoxicol 8(1):80–94

    Article  Google Scholar 

  34. Kaluzna-Czaplinska J (2011) Noninvasive urinary organic acids test to assess biochemical and nutritional individuality in autistic children. Clin Biochem 44(8–9):686–691

    Article  CAS  Google Scholar 

  35. Lord RS, Burdette CK, Bralley JA (2005) Significance of urinary tartaric acid. Clin Chem 51(3):672–673

    Article  CAS  Google Scholar 

  36. Shaw W, Kassen E, Chaves E (1995) Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clin Chem 41(8):1094–1104

    CAS  Google Scholar 

  37. Kaluzna-Czaplinska J, Michalska M, Rynkowski J (2011) Homocysteine level in urine of autistic and healthy children. Acta Biochim Pol 58(1):31–34

    CAS  Google Scholar 

  38. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W (2011) Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab 8(1):34

    Article  Google Scholar 

  39. Evans C, Dunstan RH, Rothkirch T, Roberts TK, Reichelt KL, Cosford R, Deed G, Ellis LB, Sparkes DL (2008) Altered amino acid excretion in children with autism. Nutr Neurosci 11(1):9–17

    Article  CAS  Google Scholar 

  40. Kaluzna-Czaplinska J, Socha E, Rynkowski J (2010) Determination of homovanillic acid and vanillylmandelic acid in urine of autistic children by gas chromatography/mass spectrometry. Med Sci Monit 16(9):CR445–CR450

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Institut National de la Santé et de la Recherche” INSERM and the University François-Rabelais. We thank the center “Sésame Autisme Loiret” for participation in this study. We thank the “Département d’Analyses Chimiques et S.R.M. Biologique et Médicale” (PPF, Tours, France) for GC-MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Emond.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emond, P., Mavel, S., Aïdoud, N. et al. GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 405, 5291–5300 (2013). https://doi.org/10.1007/s00216-013-6934-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6934-x

Keywords

Navigation