Skip to main content
Log in

Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: a resting-state fMRI study

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Regional homogeneity (ReHo) and the amplitude of low-frequency fluctuation (ALFF) are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging (RS-fMRI) data. Whether they can complementarily reveal brain regional functional abnormalities in attention-deficit/hyperactivity disorder (ADHD) remains unknown. In this study, we applied ReHo and ALFF to 23 medication-naïve boys diagnosed with ADHD and 25 age-matched healthy male controls using whole-brain voxel-wise analysis. Correlation analyses were conducted in the ADHD group to investigate the relationship between the regional spontaneous brain activity measured by the two approaches and the clinical symptoms of ADHD. We found that the ReHo method showed widely-distributed differences between the two groups in the fronto-cingulo-occipito-cerebellar circuitry, while the ALFF method showed a difference only in the right occipital area. When a larger smoothing kernel and a more lenient threshold were used for ALFF, more overlapped regions were found between ALFF and ReHo, and ALFF even found some new regions with group differences. The ADHD symptom scores were correlated with the ReHo values in the right cerebellum, dorsal anterior cingulate cortex and left lingual gyrus in the ADHD group, while no correlation was detected between ALFF and ADHD symptoms. In conclusion, ReHo may be more sensitive to regional abnormalities, at least in boys with ADHD, than ALFF. And ALFF may be complementary to ReHo in measuring local spontaneous activity. Combination of the two may yield a more comprehensive pathophy-siological framework for ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giedd JN, Blumenthal J, Molloy E, Castellanos FX. Brain imaging of attention deficit/hyperactivity disorder. Ann N Y Acad Sci 2001, 931: 33–49.

    Article  PubMed  CAS  Google Scholar 

  2. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34(4): 537–541.

    Article  PubMed  CAS  Google Scholar 

  3. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004, 22(1): 394–400.

    Article  PubMed  Google Scholar 

  4. Mankinen K, Long XY, Paakki JJ, Harila M, Rytky S, Tervonen O, et al. Alterations in regional homogeneity of baseline brain activity in pediatric temporal lobe epilepsy. Brain Res 2011, 1373: 221–229.

    Article  PubMed  CAS  Google Scholar 

  5. Zhong Y, Lu G, Zhang Z, Jiao Q, Li K, Liu Y. Altered regional synchronization in epileptic patients with generalized tonicclonic seizures. Epilepsy Res 2011, 97(1-2): 83–91.

    Article  PubMed  Google Scholar 

  6. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007, 29(2): 83–91.

    Article  PubMed  Google Scholar 

  7. Yang H, Long XY, Yang Y, Yan H, Zhu CZ, Zhou XP, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 2007, 36(1): 144–152.

    Article  PubMed  Google Scholar 

  8. Zhang Z, Lu G, Zhong Y, Tan Q, Chen H, Liao W, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp 2010, 31(12): 1851–1861.

    Article  PubMed  Google Scholar 

  9. He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, et al. Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage 2007, 35(2): 488–500.

    Article  PubMed  Google Scholar 

  10. Wang Z, Yan C, Zhao C, Qi Z, Zhou W, Lu J, et al. Spatial patterns of intrinsic brain activity in mild cognitive impairment and Alzheimer’s disease: a resting-state functional MRI study. Hum Brain Mapp 2011, 32(10): 1720–1740.

    Article  PubMed  Google Scholar 

  11. Liu H, Liu Z, Liang M, Hao Y, Tan L, Kuang F, et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport 2006, 17(1): 19–22.

    Article  PubMed  CAS  Google Scholar 

  12. Hoptman MJ, Zuo XN, Butler PD, Javitt DC, D’Angelo D, Mauro CJ, et al. Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res 2010, 117(1): 13–20.

    Article  PubMed  Google Scholar 

  13. Cao Q, Zang Y, Sun L, Sui M, Long X, Zou Q, et al. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 2006, 17(10): 1033–1036.

    Article  PubMed  Google Scholar 

  14. Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 2006, 400(1-2): 39–43.

    Article  PubMed  CAS  Google Scholar 

  15. Cao X, Cao Q, Long X, Sun L, Sui M, Zhu C, et al. Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res 2009, 1303: 195–206.

    Article  PubMed  CAS  Google Scholar 

  16. Gong YX, Cai TS. Manual of Chinese Revised Wechsler Intelligence Scale for Children. Changsha: Hunan Atlas Publishing House, 1993.

    Google Scholar 

  17. Yang L, Wang YF, Qian QJ, Gu BM. Primary exploration of the clinical subtypes of attention deficit hyperactivity disorder in Chinese children. Chin J Psychiatry 2001, 34: 204–207. [Article in Chinese]

    Google Scholar 

  18. DuPaul G, Power T, Anastopoulos A, Reid R. ADHD Rating Scale-IV: Checklists, Norms, and Clinical Interpretations. New York: Guilford, 1998.

    Google Scholar 

  19. Yan CG, Zang YF. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front Syst Neurosci 2010, 4: 13.

    Google Scholar 

  20. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 2011, 6(9):25031.

    Article  Google Scholar 

  21. Kendall M, Gibbons J. Rank Correlation Methods. Oxford: Oxford University Press, 1990.

    Google Scholar 

  22. Goodman R, Simonoff E, Stevenson J. The impact of child IQ, parent IQ and sibling IQ on child behavioural deviance scores. J Child Psychol Psychiatry 1995, 36(3): 409–425.

    Article  PubMed  CAS  Google Scholar 

  23. Rucklidge JJ, Tannock R. Psychiatric, psychosocial, and cognitive functioning of female adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 2001, 40(5): 530–540.

    Article  PubMed  CAS  Google Scholar 

  24. Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol 2001, 110(1): 40–48.

    Article  PubMed  CAS  Google Scholar 

  25. Dennis M, Francis DJ, Cirino PT, Schachar R, Barnes MA, Fletcher JM. Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuropsychol Soc 2009, 15(3): 331–343.

    Article  PubMed  Google Scholar 

  26. Shmuel A, Leopold DA. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest. Hum Brain Mapp 2008, 29(7): 751–761.

    Article  PubMed  Google Scholar 

  27. Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, et al. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci U S A 2007, 104(46): 18265–18269.

    Article  PubMed  CAS  Google Scholar 

  28. Goldman RI, Stern JM, Engel J Jr, Cohen MS. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 2002, 13(18): 2487–2492.

    Article  PubMed  Google Scholar 

  29. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, et al. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 2003, 20(1): 145–158.

    Article  PubMed  Google Scholar 

  30. Leopold DA, Murayama Y, Logothetis NK. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 2003, 13(4): 422–433.

    Article  PubMed  Google Scholar 

  31. Rubia K, Halari R, Cubillo A, Mohammad AM, Brammer M, Taylor E. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 2009, 57(7–8): 640–652.

    Article  PubMed  CAS  Google Scholar 

  32. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004, 304(5679): 1926–1929.

    Article  PubMed  CAS  Google Scholar 

  33. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005, 102(27): 9673–9678.

    Article  PubMed  CAS  Google Scholar 

  34. Tian L, Jiang T, Liang M, Zang Y, He Y, Sui M, et al. Enhanced resting-state brain activities in ADHD patients: a fMRI study. Brain Dev 2008, 30(5): 342–348.

    Article  PubMed  Google Scholar 

  35. Lee JS, Kim BN, Kang E, Lee DS, Kim YK, Chung JK, et al. Regional cerebral blood flow in children with attention deficit hyperactivity disorder: comparison before and after methylphenidate treatment. Hum Brain Mapp 2005, 24(3): 157–164.

    Article  PubMed  Google Scholar 

  36. Schweitzer JB, Lee DO, Hanford RB, Tagamets MA, Hoffman JM, Grafton ST, et al. A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacol 2003, 28(5): 967–973.

    CAS  Google Scholar 

  37. O’Gorman RL, Mehta MA, Asherson P, Zelaya FO, Brookes KJ, Toone BK, et al. Increased cerebral perfusion in adult attention deficit hyperactivity disorder is normalised by stimulant treatment: a non-invasive MRI pilot study. Neuroimage 2008, 42(1): 36–41.

    Article  PubMed  Google Scholar 

  38. Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacol 2010, 35(1): 278–300.

    Article  Google Scholar 

  39. Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci 2012, 16(1): 17–26.

    Article  PubMed  Google Scholar 

  40. Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp 2010, 31(6): 904–916.

    Article  PubMed  Google Scholar 

  41. Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry 2011, 69(12): 1178–1184.

    Article  PubMed  Google Scholar 

  42. Dickstein SG, Bannon K, Castellanos FX, Milham MP. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry 2006, 47(10): 1051–1062.

    Article  PubMed  Google Scholar 

  43. Valera EM, Brown A, Biederman J, Faraone SV, Makris N, Monuteaux MC, et al. Sex differences in the functional neuroanatomy of working memory in adults with ADHD. Am J Psychiatry 2010, 167(1): 86–94.

    Article  PubMed  Google Scholar 

  44. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 2008, 63(3): 332–337.

    Article  PubMed  Google Scholar 

  45. Uddin LQ, Kelly AM, Biswal BB, Margulies DS, Shehzad Z, Shaw D, et al. Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods 2008, 169(1): 249–254.

    Article  PubMed  Google Scholar 

  46. Fair DA, Posner J, Nagel BJ, Bathula D, Dias TG, Mills KL, et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry 2010, 68(12): 1084–1091.

    Article  PubMed  Google Scholar 

  47. Sonuga-Barke EJ, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 2007, 31(7): 977–986.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Feng Zang or Yu-Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, L., Cao, QJ., Sui, MQ. et al. Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: a resting-state fMRI study. Neurosci. Bull. 29, 603–613 (2013). https://doi.org/10.1007/s12264-013-1353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1353-8

Keywords

Navigation