Skip to main content
Log in

β-Amyloid and Cholinergic Neurons

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is generally accepted that the crucial events in the pathogeny of Alzheimer's disease (AD) are the increased accumulation of amyloidogenic peptides derived from amyloid precursor protein and the harmful actions of these peptides on neurons, which bring about neurodegeneration. The enhanced β-amyloid accumulation is known to be caused by mutations of specific genes in patients who suffer from the familial (hereditary) form of AD but who represent just a minor group within the total population of AD patients. The reasons for β-amyloid accumulation are not known in the much larger group of patients with the sporadic form of the disease. A biochemical feature common to either form of the disease is the preferential atrophy and degeneration of cholinergic neurons, which is probably responsible for much of the cognitive decline characteristic of the disease. We present an overview of recent investigations on the interactions between β-amyloid and cholinergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Selkoe, D. J. 2001. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81:741–766.

    PubMed  Google Scholar 

  2. Saitoh, T., Sundsmo, M., Roch, J. M., Kimura, N., Cole, G., Schubert, D., Oltersdorf, T., and Schenk, D. B. 1989. Secreted form of amyloid beta protein precursor is involved in the growth regulation of fibroblasts. Cell 58:615–622.

    PubMed  Google Scholar 

  3. Schubert, D., Jin, L. W., Saitoh, T., and Cole, G. 1989. The regulation of amyloid beta protein precursor secretion and its modulatory role in cell adhesion. Neuron 3:689–694.

    PubMed  Google Scholar 

  4. Breen, K. C., Bruce, M., and Anderton, B. H. 1991. Beta amyloid precursor protein mediates neuronal cell-cell and cell-surface adhesion. J. Neurosci. Res. 28:90–100.

    PubMed  Google Scholar 

  5. Chen, M. and Yankner, B. A. 1991. An antibody to beta amyloid and the amyloid precursor protein inhibits cell-substratum adhesion in many mammalian cell types. Neurosci. Lett. 125: 223–226.

    PubMed  Google Scholar 

  6. Milward, E. A., Papadopoulos, R., Fuller, S. J., Moir, R. D., Small, D., Beyreuther, K., and Masters, C. L. 1992. The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9:129–137.

    PubMed  Google Scholar 

  7. Mattson, M. P., Cheng, B., Culwell, A. R., Esch, F. S., Lieberburg, I., and Rydel, R. E. 1993. Evidence for excito-protective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10:243–54.

    PubMed  Google Scholar 

  8. Clarris, H. J., Nurcombe, V., Small, D. H., Beyreuther, K., and Masters, C. L. 1994. Secretion of nerve growth factor from septum stimulates neurite outgrowth and release of the amyloid protein precursor of Alzheimer's disease from hippocampal explants. J. Neurosci. Res. 38:248–258.

    PubMed  Google Scholar 

  9. Qiu, W. Q., Ferreira, A., Miller, C., Koo, E. H., and Selkoe, D. J. 1995. Cell-surface beta-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner. J. Neurosci. 15:2157–2167.

    PubMed  Google Scholar 

  10. Coulson, E. J., Barrett, G. L., Storey, E., Bartlett, P. F., Beyreuther, K., and Masters, C. L. 1997. Down-regulation of the amyloid protein precursor of Alzheimer's disease by antisense oligonucleotides reduces neuronal adhesion to specific substrata. Brain Res. 770:72–80.

    PubMed  Google Scholar 

  11. Gillian, A. M., McFarlane, I., Lucy, F. M., Overly, C., McConlogue, L., and Breen, K. C. 1997. Individual isoforms of the amyloid beta precursor protein demonstrate differential adhesive potentials to constituents of the extracellular matrix. J. Neurosci. Res. 49:154–160.

    PubMed  Google Scholar 

  12. Mattson, M. P. 1997. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77:1081–1132.

    PubMed  Google Scholar 

  13. Perez, R. G., Zheng, H., Van der Ploeg, L. H., and Koo, E. H. 1997. The beta-amyloid precursor protein of Alzheimer's disease enhances neuron viability and modulates neuronal polarity. J. Neurosci. 17:9407–9414.

    PubMed  Google Scholar 

  14. Sudo, H., Jiang, H., Yasukawa, T., Hashimoto, Y., Niikura, T., Kawasumi, M., Matsuda, S., Takeuchi, Y., Aiso, S., Matsuoka, M., Murayama, Y., and Nishimoto, I. 2000. Antibody-regulated neurotoxic function of cell-surface beta-amyloid precursor protein. Mol. Cell Neurosci. 16:708–723.

    PubMed  Google Scholar 

  15. Zheng, H., Jiang, M., Trumbauer, M. E., Sirinathsinghji, D. J., Hopkins, R., Smith, D. W., Heavens, R. P., Dawson, G. R., Boyce, S., Conner, M. W., et al. 1995. Beta-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81:525–531.

    PubMed  Google Scholar 

  16. White, A. R., Zheng, H., Galatis, D., Maher, F., Hesse, L., Multhaup, G., Beyreuther, K., Masters, C. L., and Cappai, R. 1998. Survival of cultured neurons from amyloid precursor protein knock-out mice against Alzheimer's amyloid-beta toxicity and oxidative stress. J. Neurosci. 18:6207–6217.

    PubMed  Google Scholar 

  17. White, A. R., Multhaup, G., Maher, F., Bellingham, S., Camakaris, J., Zheng, H., Bush, A. I., Beyreuther, K., Masters, C. L., and Cappai, R. 1999. The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J. Neurosci. 19:9170–9179.

    PubMed  Google Scholar 

  18. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., et al. 1992. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325.

    PubMed  Google Scholar 

  19. Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher, M., Whaley, J., Swindlehurst, C., et al. 1992. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature 359:325–327.

    PubMed  Google Scholar 

  20. Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., and Schenk, D. B. 1993. Characterization of beta-amyloid peptide from human cerebrospinal fluid. J. Neurochem. 61: 1965–1968.

    PubMed  Google Scholar 

  21. Furukawa, K., Sopher, B. L., Rydel, R. E., Begley, J. G., Pham, D. G., Martin, G. M., Fox, M., and Mattson, M. P. 1996. Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem. 67:1882–1896.

    PubMed  Google Scholar 

  22. Mattson, M. P., Guo, Z. H., and Geiger, J. D. 1999. Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J. Neurochem. 73:532–537.

    PubMed  Google Scholar 

  23. Whitson, J. S., Selkoe, D. J., and Cotman, C. W. 1989. Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science 243:1488–1490.

    PubMed  Google Scholar 

  24. Whitson, J. S., Glabe, C. G., Shintani, E., Abcar, A., and Cotman, C. W. 1990. Beta-amyloid protein promotes neuritic branching in hippocampal cultures. Neurosci. Lett. 110: 319–324.

    PubMed  Google Scholar 

  25. Yankner, B. A., Duffy, L. K., and Kirschner, D. A. 1990. Neurotrophic and neurotoxic effects of amyloid beta protein: Reversal by tachykinin neuropeptides. Science 250:279–282.

    PubMed  Google Scholar 

  26. Pike, C. J., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. 1991. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563:311–314.

    PubMed  Google Scholar 

  27. Beyreuther, K., Bush, A. I., Dyrks, T., Hilbich, C., Konig, G., Monning, U., Multhaup, G., Prior, R., Rumble, B., Schubert, W., et al. 1991. Mechanisms of amyloid deposition in Alzheimer's disease. Ann. N.Y. Acad. Sci. 640:129–139.

    PubMed  Google Scholar 

  28. Sandbrink, R. and Beyreuther, K. 1996. Unraveling the molecular pathway of Alzheimer's disease: Research about presenilins gathers momentum. Mol. Psychiatry 1:438–444.

    PubMed  Google Scholar 

  29. Sandbrink, R., Hartmann, T., Masters, C. L., and Beyreuther, K. 1996. Genes contributing to Alzheimer's disease. Mol. Psychiatry 1:27–40.

    PubMed  Google Scholar 

  30. Mills, J. and Reiner, P. B. 1999. Regulation of amyloid precursor protein cleavage. J. Neurochem. 72:443–460.

    PubMed  Google Scholar 

  31. Selkoe, D. J. 1999. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399:A23–A31.

    PubMed  Google Scholar 

  32. Small, D. H. and McLean, C. A. 1999. Alzheimer's disease and the amyloid beta protein: What is the role of amyloid? J. Neurochem. 73:443–449.

    PubMed  Google Scholar 

  33. Fassbender, K., Masters, C., and Beyreuther, K. 2001. Alzheimer's disease: Molecular concepts and therapeutic targets. Naturwissenschaften 88:261–267.

    PubMed  Google Scholar 

  34. Bradbury, J. 2001. Proteolysis problems implicated in neurodegenerative diseases. Lancet 357:1679.

    Google Scholar 

  35. Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N. P., Gerard, C., Hama, E., Lee, H. J., and Saido, T. C. 2001. Metabolic regulation of brain Abeta by neprilysin. Science 292:1550–1552.

    PubMed  Google Scholar 

  36. Kurochkin, I. V. 2001. Insulin-degrading enzyme: Embarking on amyloid destruction. Trends Biochem. Sci. 26:421–425.

    PubMed  Google Scholar 

  37. Selkoe, D. J. 2001. Clearing the brain's amyloid cobwebs. Neuron 32:177–180.

    PubMed  Google Scholar 

  38. Shirotani, K., Tsubuki, S., Iwata, N., Takaki, Y., Harigaya, W., Maruyama, K., Kiryu-Seo, S., Kiyama, H., Iwata, H., Tomita, T., Iwatsubo, T., and Saido, T. C. 2001. Neprilysin degrades both amyloid beta peptides 1–40 and 1–42 most rapidly and efficiently among thiorphan-and phosphoramidon-sensitive endopeptidases. J. Biol. Chem. 276:21895–21901.

    PubMed  Google Scholar 

  39. Carson, J. A. and Turner, A. J. 2002. Beta-amyloid catabolism: Roles for neprilysin (NEP) and other metallopeptidases? J. Neurochem. 81:1–8.

    Google Scholar 

  40. Hoyer, S. 2000. Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease: Causes and consequences: an update. Exp. Gerontol. 35:1363–1372.

    PubMed  Google Scholar 

  41. Joseph, J., Shukitt-Hale, B., Denisova, N. A., Martin, A., Perry, G., and Smith, M. A. 2001. Copernicus revisited: Amyloid beta in Alzheimer's disease. Neurobiol. Aging 22:131–146.

    PubMed  Google Scholar 

  42. Conway, K. A., Harper, J. D., and Lansbury, P. T., Jr. 2000. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39:2552–2563.

    PubMed  Google Scholar 

  43. Haass, C. and Steiner, H. 2001. Protofibrils, the unifying toxic molecule of neurodegenerative disorders? Nat. Neurosci. 4:859–860.

    PubMed  Google Scholar 

  44. Klein, W. L., Krafft, G. A., and Finch, C. E. 2001. Targeting small Abeta oligomers: The solution to an Alzheimer's disease conundrum? Trends Neurosci. 24:219–224.

    PubMed  Google Scholar 

  45. Cuajungco, M. P., Goldstein, L. E., Nunomura, A., Smith, M. A., Lim, J. T., Atwood, C. S., Huang, X., Farrag, Y. W., Perry, G., and Bush, A. I. 2000. Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc. J. Biol. Chem. 275:19439–19442.

    PubMed  Google Scholar 

  46. Heininger, K. 2000. A unifying hypothesis of Alzheimer's disease: IV. Causation and sequence of events. Rev. Neurosci. 11(spec no):213–328.

    PubMed  Google Scholar 

  47. Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., Rosi, B. L., Gusella, J. F., Crapper-MacLachlan, D. R., Alberts, M. J., et al. 1993. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43:1467–1472.

    PubMed  Google Scholar 

  48. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–923.

    PubMed  Google Scholar 

  49. Strittmatter, W. J., Weisgraber, K. H., Goedert, M., Saunders, A. M., Huang, D., Corder, E. H., Dong, L. M., Jakes, R., Alberts, M. J., Gilbert, J. R., et al. 1994. Hypothesis: Microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp. Neurol. 125:163–671; discussion 172–174.

    PubMed  Google Scholar 

  50. Oron, L., Efrati, M., and Michaelson, D. M. 2000. Secretion of the amyloid precursor protein is elevated isoform specifically by apolipoprotein E4. J. Neural Transm. (Suppl.) 59: 163–169.

    Google Scholar 

  51. Sabo, T., Lomnitski, L., Nyska, A., Beni, S., Maronpot, R. R., Shohami, E., Roses, A. D., and Michaelson, D. M. 2000. Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury: The allele E3 is neuroprotective whereas E4 increases fatalities. Neuroscience 101:879–884.

    PubMed  Google Scholar 

  52. Bodovitz, S. and Klein, W. L. 1996. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 271:4436–4440.

    PubMed  Google Scholar 

  53. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. 1998. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95:6460–6464.

    PubMed  Google Scholar 

  54. Frears, E. R., Stephens, D. J., Walters, C. E., Davies, H., and Austen, B. M. 1999. The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10:1699–1705.

    PubMed  Google Scholar 

  55. Refolo, L. M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., Duff, K., and Pappolla, M. A. 2000. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7:321–331.

    PubMed  Google Scholar 

  56. Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., and Hartmann, T. 2001. Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98:5856–5861.

    PubMed  Google Scholar 

  57. Kojro, E., Gimpl, G., Lammich, S., Marz, W., and Fahrenholz, F. 2001. From the cover: Low cholesterol stimulates the non-amyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc. Natl. Acad. Sci. USA 98:5815–5820.

    PubMed  Google Scholar 

  58. Hartmann, T. 2001. Cholesterol, A beta and Alzheimer's disease. Trends Neurosci. 24:S45–S48.

    PubMed  Google Scholar 

  59. Refolo, L. M., Pappolla, M. A., LaFrancois, J., Malester, B., Schmidt, S. D., Thomas-Bryant, T., Tint, G. S., Wang, R., Mercken, M., Petanceska, S. S., and Duff, K. E. 2001. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 8:890–899.

    PubMed  Google Scholar 

  60. Runz, H., Rietdorf, J., Tomic, I., de Bernard, M., Beyreuther, K., Pepperkok, R., and Hartmann, T. 2002. Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J. Neurosci. 22:1679–1689.

    PubMed  Google Scholar 

  61. Wahrle, S., Das, P., Nyborg, A. C., McLendon, C., Shoji, M., Kawarabayashi, T., Younkin, L. H., Younkin, S. G., and Golde, T. E. 2002. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9:11–23.

    PubMed  Google Scholar 

  62. Jarvik, G. P., Wijsman, E. M., Kukull, W. A., Schellenberg, G. D., Yu, C., and Larson, E. B. 1995. Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer's disease: A case-control study. Neurology 45:1092–1096.

    PubMed  Google Scholar 

  63. Notkola, I. L., Sulkava, R., Pekkanen, J., Erkinjuntti, T., Ehnholm, C., Kivinen, P., Tuomilehto, J., and Nissinen, A. 1998. Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer's disease. Neuroepidemiology 17:14–20.

    PubMed  Google Scholar 

  64. Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A. 2000. Statins and the risk of dementia. Lancet 356: 1627–1631.

    PubMed  Google Scholar 

  65. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G. 2000. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57:1439–1443.

    PubMed  Google Scholar 

  66. Buxbaum, J. D., Oishi, M., Chen, H. I., Pinkas-Kramarski, R., Jaffe, E. A., Gandy, S. E., and Greengard, P. 1992. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc. Natl. Acad. Sci. USA 89:10075–10078.

    PubMed  Google Scholar 

  67. Nitsch, R. M., Slack, B. E., Wurtman, R. J., and Growdon, J. H. 1992. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307.

    PubMed  Google Scholar 

  68. Slack, B. E., Breu, J., Petryniak, M. A., Srivastava, K., and Wurtman, R. J. 1995. Tyrosine phosphorylation-dependent stimulation of amyloid precursor protein secretion by the M3 muscarinic acetylcholine receptor. J. Biol. Chem. 270:8337–8344.

    PubMed  Google Scholar 

  69. Wolf, B. A., Wertkin, A. M., Jolly, Y. C., Yasuda, R. P., Wolfe, B. B., Konrad, R. J., Manning, D., Ravi, S., Williamson, J. R., and Lee, V. M. 1995. Muscarinic regulation of Alzheimer's disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J. Biol. Chem. 270:4916–4922.

    PubMed  Google Scholar 

  70. Nitsch, R. M. 1996. From acetylcholine to amyloid: Neurotransmitters and the pathology of Alzheimer's disease. Neurodegeneration 5:477–482.

    PubMed  Google Scholar 

  71. Nitsch, R. M., Deng, M., Growdon, J. H., and Wurtman, R. J. 1996. Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J. Biol. Chem. 271:4188–4194.

    PubMed  Google Scholar 

  72. Nitsch, R. M., Wurtman, R. J., and Growdon, J. H. 1996. Regulation of APP processing: Potential for the therapeutical reduction of brain amyloid burden. Ann. N.Y. Acad. Sci. 777: 175–182.

    PubMed  Google Scholar 

  73. Buxbaum, J. D., Gandy, S. E., Cicchetti, P., Ehrlich, M. E., Czernik, A. J., Fracasso, R. P., Ramabhadran, T. V., Unterbeck, A. J., and Greengard, P. 1990. Processing of Alzheimer beta/A4 amyloid precursor protein: Modulation by agents that regulate protein phosphorylation. Proc. Natl. Acad. Sci. USA 87:6003–6006.

    PubMed  Google Scholar 

  74. McLaughlin, M. and Breen, K. C. 1999. Protein kinase C activation potentiates the rapid secretion of the amyloid precursor protein from rat cortical synaptosomes. J. Neurochem. 72:273–281.

    PubMed  Google Scholar 

  75. Petryniak, M. A., Wurtman, R. J., and Slack, B. E. 1996. Elevated intracellular calcium concentration increases secretory processing of the amyloid precursor protein by a tyrosine phosphorylation-dependent mechanism. Biochem. J. 320(Pt 3): 957–963.

    PubMed  Google Scholar 

  76. Kim, S. H., Kim, Y. K., Jeong, S. J., Haass, C., Kim, Y. H., and Suh, Y. H. 1997. Enhanced release of secreted form of Alzheimer's amyloid precursor protein from PC12 cells by nicotine. Mol. Pharmacol. 52:430–436.

    PubMed  Google Scholar 

  77. Hernandez, D., Sugaya, K., Qu, T., McGowan, E., Duff, K., and McKinney, M. 2001. Survival and plasticity of basal forebrain cholinergic systems in mice transgenic for presenilin-1 and amyloid precursor protein mutant genes. Neuroreport 12: 1377–1384.

    PubMed  Google Scholar 

  78. Isacson, O., Seo, H., Lin, L., Albeck, D., and Granholm, A. C. 2002. Alzheimer's disease and Down's syndrome: Roles of APP, trophic factors and ACh. Trends Neurosci. 25:79–84.

    PubMed  Google Scholar 

  79. Yankner, B. A. 1996. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16:921–932.

    PubMed  Google Scholar 

  80. Berlett, B. S. and Stadtman, E. R. 1997. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313–20316.

    PubMed  Google Scholar 

  81. Finkel, T. and Holbrook, N. J. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247.

    PubMed  Google Scholar 

  82. Miranda, S., Opazo, C., Larrondo, L. F., Munoz, F. J., Ruiz, F., Leighton, F., and Inestrosa, N. C. 2000. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer's disease. Prog. Neurobiol. 62:633–648.

    PubMed  Google Scholar 

  83. Pratico, D. and Delanty, N. 2000. Oxidative injury in diseases of the central nervous system: Focus on Alzheimer's disease. Am. J. Med. 109:577–585.

    PubMed  Google Scholar 

  84. Arispe, N., Rojas, E., and Pollard, H. B. 1993. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: Blockade by tromethamine and aluminum. Proc. Natl. Acad. Sci. USA 90:567–571.

    PubMed  Google Scholar 

  85. Davidson, R. M., Shajenko, L., and Donta, T. S. 1994. Amyloid beta-peptide (A beta P) potentiates a nimodipine-sensitive L-type barium conductance in N1E-115 neuroblastoma cells. Brain Res. 643:324–327.

    PubMed  Google Scholar 

  86. Pollard, H. B., Arispe, N., and Rojas, E. 1995. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol. Neurobiol. 15:513–526.

    PubMed  Google Scholar 

  87. Hirakura, Y., Lin, M. C., and Kagan, B. L. 1999. Alzheimer amyloid abeta1-42 channels: Effects of solvent, pH, and Congo Red. J. Neurosci. Res. 57:458–466.

    PubMed  Google Scholar 

  88. Lin, H., Zhu, Y. J., and Lal, R. 1999. Amyloid beta protein (1–40) forms calcium-permeable, Zn2+sensitive channel in reconstituted lipid vesicles. Biochemistry 38:11189–11196.

    PubMed  Google Scholar 

  89. Harkany, T., Abraham, I., Konya, C., Nyakas, C., Zarandi, M., Penke, B., and Luiten, P. G. 2000. Mechanisms of beta-amyloid neurotoxicity: perspectives of pharmacotherapy. Rev. Neurosci. 11:329–382.

    PubMed  Google Scholar 

  90. Harkany, T., Abraham, I., Timmerman, W., Laskay, G., Toth, B., Sasvari, M., Konya, C., Sebens, J. B., Korf, J., Nyakas, C., Zarandi, M., Soos, K., Penke, B., and Luiten, P. G. 2000. Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci. 12: 2735–2745.

    PubMed  Google Scholar 

  91. Ishii, K., Muelhauser, F., Liebl, U., Picard, M., Kuhl, S., Penke, B., Bayer, T., Wiessler, M., Hennerici, M., Beyreuther, K., Hartmann, T., and Fassbender, K. 2000. Subacute NO generation induced by Alzheimer's beta-amyloid in the living brain: Reversal by inhibition of the inducible NO synthase. FASEB J. 14:1485–1489.

    PubMed  Google Scholar 

  92. Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H., and Tomlinson, B. E. 1977. Neurotransmitter enzyme abnormalities in senile dementia: Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J. Neurol. Sci. 34:247–265.

    PubMed  Google Scholar 

  93. Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. 1977. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1:189.

  94. Sims, N. R., Bowen, D. M., and Davison, A. N. 1981. [14C]Acetylcholine synthesis and carbon dioxide production from [U-14C]glucose by tissue prisms from human neocortex. Biochem. J. 196:867–876.

    PubMed  Google Scholar 

  95. Bartus, R. T., Dean, R. L. 3rd, Beer, B., and Lippa, A. S. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414.

    PubMed  Google Scholar 

  96. Palmer, A. M. and Gershon, S. 1990. Is the neuronal basis of Alzheimer's disease cholinergic or glutamatergic? FASEB J. 4:2745–2752.

    PubMed  Google Scholar 

  97. Francis, P. T., Palmer, A. M., Snape, M., and Wilcock, G. K. 1999. The cholinergic hypothesis of Alzheimer's disease: A review of progress. J. Neurol. Neurosurg. Psychiatry 66:137–147.

    PubMed  Google Scholar 

  98. Kar, S., Issa, A. M., Seto, D., Auld, D. S., Collier, B., and Quirion, R. 1998. Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J. Neurochem. 70:2179–2187.

    PubMed  Google Scholar 

  99. Kar, S., Seto, D., Gaudreau, P., and Quirion, R. 1996. Beta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. J. Neurosci. 16: 1034–1040.

    PubMed  Google Scholar 

  100. Auld, D. S., Kar, S., and Quirion, R. 1998. Beta-amyloid peptides as direct cholinergic neuromodulators: A missing link? Trends Neurosci. 21:43–49.

    PubMed  Google Scholar 

  101. Vaucher, E., Aumont, N., Pearson, D., Rowe, W., Poirier, J., and Kar, S. 2001. Amyloid beta peptide levels and its effects on hippocampal acetylcholine release in aged, cognitively-impaired and-unimpaired rats. J. Chem. Neuroanat. 21:323–329.

    PubMed  Google Scholar 

  102. Wang, H. Y., Lee, D. H., D'Andrea, M. R., Peterson, P. A., Shank, R. P., and Reitz, A. B. 2000. Beta-amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity: Implications for Alzheimer's disease pathology. J. Biol. Chem. 275:5626–5632.

    PubMed  Google Scholar 

  103. Wang, H. Y., Lee, D. H., Davis, C. B., and Shank, R. P. 2000. Amyloid peptide Abeta(1–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J. Neurochem. 75:1155–1161.

    PubMed  Google Scholar 

  104. Wang, H. Y., D'Andrea, M. R., and Nagele, R. G. 2002. Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells. Neurobiol. Aging 23:213–223.

    PubMed  Google Scholar 

  105. Hoshi, M., Takashima, A., Noguchi, K., Murayama, M., Sato, M., Kondo, S., Saitoh, Y., Ishiguro, K., Hoshino, T., and Imahori, K. 1996. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc. Natl. Acad. Sci. USA 93:2719–2723.

    PubMed  Google Scholar 

  106. Hoshi, M., Takashima, A., Murayama, M., Yasutake, K., Yoshida, N., Ishiguro, K., Hoshino, T., and Imahori, K. 1997. Nontoxic amyloid beta peptide 1–42 suppresses acetylcholine synthesis: Possible role in cholinergic dysfunction in Alzheimer's disease. J. Biol. Chem. 272:2038–2041.

    PubMed  Google Scholar 

  107. Pedersen, W. A., Kloczewiak, M. A., and Blusztajn, J. K. 1996. Amyloid beta-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc. Natl. Acad. Sci. USA 93:8068–8071.

    PubMed  Google Scholar 

  108. Erickson, J. D., Varoqui, H., Schafer, M. K., Modi, W., Diebler, M. F., Weihe, E., Rand, J., Eiden, L. E., Bonner, T. I., and Usdin, T. B. 1994. Functional identification of a vesicular acetylcholine transporter and its expression from a "cholinergic" gene locus. J. Biol. Chem. 269:21929–21932.

    PubMed  Google Scholar 

  109. Berrard, S., Varoqui, H., Cervini, R., Israel, M., Mallet, J., and Diebler, M. F. 1995. Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter. J. Neurochem. 65:939–942.

    PubMed  Google Scholar 

  110. Varoqui, H., Meunier, F. M., Meunier, F. A., Molgo, J., Berrard, S., Cervini, R., Mallet, J., Israel, M., and Diebler, M. F. 1996. Expression of the vesicular acetylcholine transporter in mammalian cells. Prog. Brain Res. 109:83–95.

    PubMed  Google Scholar 

  111. Pedersen, W. A. and Blusztajn, J. K. 1997. Characterization of the acetylcholine-reducing effect of the amyloid-beta peptide in mouse SN56 cells. Neurosci. Lett. 239:77–80.

    PubMed  Google Scholar 

  112. Diebler, M. F., Tomasi, M., Meunier, F. M., Israel, M., and Dolezal, V. 1998. Influence of retinoic acid and of cyclic AMP on the expression of choline acetyltransferase and of vesicular acetylcholine transporter in NG108-15 cells. J. Physiol. (paris) 92:379–384.

    Google Scholar 

  113. Dolezal, V., Castell, X., Tomasi, M., and Diebler, M. F. 2001. Stimuli that induce a cholinergic neuronal phenotype of NG108-15 cells upregulate ChAT and VAChT mRNAs but fail to increase VAChT protein. Brain Res. Bull. 54:363–373.

    PubMed  Google Scholar 

  114. Dolezal, V., Lisa, V., Diebler, M. F., Kasparova, J., and Tučcek, S. 2001. Differentiation of NG108-15 cells induced by the combined presence of dbcAMP and dexamethasone brings about the expression of N and P/Q types of calcium channels and the inhibitory influence of muscarinic receptors on calcium influx. Brain Res. 910:134–141.

    PubMed  Google Scholar 

  115. Castell, X., Diebler, M. F., Tomasi, M., Bigari, C., De Gois, S., Berrard, S., Mallet, J., Israel, M., and Dolezal, V. 2002. More than one way to toy with ChAT and VAChT. J. Physiol. (Paris) 96:61–72.

    Google Scholar 

  116. Kasparova, J., Lisa, V., Tučcek, S., and Dolezal, V. 2001. Chronic exposure of NG108-15 cells to amyloid beta peptide (A beta [1–42]) abolishes calcium influx via N-type calcium channels. Neurochem. Res. 26:1079–1084.

    PubMed  Google Scholar 

  117. Rossner, S., Ueberham, U., Schliebs, R., Perez-Polo, J. R., and Bigl, V. 1998. The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog. Neurobiol. 56:541–569.

    PubMed  Google Scholar 

  118. Lin, L., LeBlanc, C. J., Deacon, T. W., and Isacson, O. 1998. Chronic cognitive deficits and amyloid precursor protein elevation after selective immunotoxin lesions of the basal forebrain cholinergic system. Neuroreport 9:547–552.

    PubMed  Google Scholar 

  119. Browne, S. E., Lin, L., Mattsson, A., Georgievska, B., and Isacson, O. 2001. Selective antibody-induced cholinergic cell and synapse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficits. Exp. Neurol. 170:36–47.

    PubMed  Google Scholar 

  120. Lin, L., Georgievska, B., Mattsson, A., and Isacson, O. 1999. Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc. Natl. Acad. Sci. USA 96:12108–12113.

    PubMed  Google Scholar 

  121. Seo, H., Ferree, A. W., and Isacson, O. 2002. Corticohippocampal APP and NGF levels are dynamically altered by cholinergic muscarinic antagonist or M1 agonist treatment in normal mice. Eur. J. Neurosci. 15:498–506.

    PubMed  Google Scholar 

  122. Blusztajn, J. K. and Berse, B. 2000. The cholinergic neuronal phenotype in Alzheimer's disease. Metab. Brain Dis. 15:45–64.

    PubMed  Google Scholar 

  123. Granholm, A. C., Sanders, L. A., and Crnic, L. S. 2000. Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down's syndrome. Exp. Neurol. 161:647–663.

    PubMed  Google Scholar 

  124. Chen, K. S., Nishimura, M. C., Armanini, M. P., Crowley, C., Spencer, S. D., and Phillips, H. S. 1997. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J. Neurosci. 17:7288–7296.

    PubMed  Google Scholar 

  125. Ruberti, F., Capsoni, S., Comparini, A., Di Daniel, E., Franzot, J., Gonfloni, S., Rossi, G., Berardi, N., and Cattaneo, A. 2000. Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J. Neurosci. 20:2589–2601.

    PubMed  Google Scholar 

  126. Capsoni, S., Ugolini, G., Comparini, A., Ruberti, F., Berardi, N., and Cattaneo, A. 2000. Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc. Natl. Acad. Sci. USA 97:6826–6831.

    PubMed  Google Scholar 

  127. Smith, D. E., Roberts, J., Gage, F. H., and Tuszynski, M. H. 1999. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc. Natl. Acad. Sci. USA 96:10893–10898.

    PubMed  Google Scholar 

  128. Conner, J. M., Darracq, M. A., Roberts, J., and Tuszynski, M. H. 2001. Nontropic actions of neurotrophins: Subcortical nerve growth factor gene delivery reverses age-related degeneration of primate cortical cholinergic innervation. Proc. Natl. Acad. Sci. USA 98:1941–1946.

    PubMed  Google Scholar 

  129. Rapoport, S. I. 2000. Functional brain imaging to identify affected subjects genetically at risk for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 97:5696-5698.

    PubMed  Google Scholar 

  130. Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., and Frost, J. 2001. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. Proc. Natl. Acad. Sci. USA 98:3334–3339.

    PubMed  Google Scholar 

  131. Reiman, E. M. Caselli, R. J., Alexander, G. E., and Chen, K. 2001. Tracking the decline in cerebral glucose utilization in persons and laboratory animals at genetic risk for Alzheimer's disease. Clin. Neurosci. Res. 1:194–206.

    Google Scholar 

  132. Niwa, K., Kazama, K., Younkin, S. G., Carlson, G. A., and Iadecola, C. 2002. Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol. Dis. 9:61–68.

    PubMed  Google Scholar 

  133. Tučcek, S. and Cheng, S. C. 1974. Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J. Neurochem. 22:893–914.

    PubMed  Google Scholar 

  134. Gibson, G. E., Jope, R., and Blass, J. P. 1975. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J. 148:17–23.

    PubMed  Google Scholar 

  135. Gibson, G. E. and Blass, J. P. 1976. Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J. Neurochem. 27:37–42.

    PubMed  Google Scholar 

  136. Dolezal, V. and Tučcek, S. 1981. Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices. J. Neurochem. 36:1323–1330.

    PubMed  Google Scholar 

  137. Tučcek, S., Dolezal, V., and Sullivan, A. C. 1981. Inhibition of the synthesis of acetylcholine in rat brain slices by (-)-hydroxycitrate and citrate. J. Neurochem. 36:1331–1337.

    PubMed  Google Scholar 

  138. Dolezal, V. and Tučcek, S. 1982. Effects of choline and glucose on atropine-induced alterations of acetylcholine synthesis and content in the caudate nuclei of rats. Brain Res. 240:285–293.

    PubMed  Google Scholar 

  139. Ricny, J., Tučcek, S., and Novakova, J. 1992. Acetylcarnitine, carnitine and glucose diminish the effect of muscarinic antagonist quinuclidinyl benzilate on striatal acetylcholine content. Brain Res. 576:215–219.

    PubMed  Google Scholar 

  140. Messier, C. and Gagnon, M. 1996. Glucose regulation and cognitive functions: Relation to Alzheimer's disease and diabetes. Behav. Brain Res. 75:1–11.

    PubMed  Google Scholar 

  141. Ragozzino, M. E., Unick, K. E., and Gold, P. E. 1996. Hippocampal acetylcholine release during memory testing in rats: Augmentation by glucose. Proc. Natl. Acad. Sci. USA 93: 4693–4698.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doležal, V., Kašparová, J. β-Amyloid and Cholinergic Neurons. Neurochem Res 28, 499–506 (2003). https://doi.org/10.1023/A:1022865121743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022865121743

Navigation