Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective attention enhances the auditory 40-Hz transient response in humans

Abstract

STUDIES of human auditory1–3 and somatosensory3 modalities have shown that there is an oscillatory response in the γ-band (at about 40 Hz) frequency which is elicited by either steady state1–3 or transient4 stimulation. The auditory 40-Hz response is generated at least partially in the auditory cortex4,5as a result of thalamocortical interaction6 and may serve perceptual integration7,8 and conscious perception9. A connection to selective attention has been implied in human10 and animal11 studies, although the evidence is inconclusive12. Moreover, fundamental differences between the human and animal 40-Hz responses13 prohibit generalization. Furthermore, most experiments have used steady-state stimulation during which the brain does not regain its resting state between stimuli as it does when transient stimulation is used14. Here we study the effect of selective attention on the auditory γ-band (40-Hz) transient response using subjects listening to tone pips presented in one ear while ignoring a concurrent sequence of tone pips in the other ear. The 40-Hz response was larger when subjects paid attention to stimuli rather than ignored them. This attention effect was most pronounced over the frontal and central scalp areas. Our results demonstrate a physiological correlate of selective attention in the 40-Hz transient response in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Galambos, R., Makeig, S. & Talmachoff, P. J. Proc. natn. Acad. Sci, U.S.A. 78, 2643–2647 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Makeig, S. & Galambos, R. Soc. Neurosci. Abstr. 15, 113 (1989).

    Google Scholar 

  3. Galambos, R. Ann. N.Y. Acad. Sci. U.S.A. 388, 722–728 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Pantev, C. et al. Proc. natn. Acad. Sci. U.S.A. 88, 8996–9000 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Mäkelä, J. P. & Hari, R. Electroenceph. clin. Neurophys. 66, 539–546 (1987).

    Article  Google Scholar 

  6. Ribary, U. et al. Proc. natn. Acad. Sci. U.S.A. 88, 11037–11041 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Gray, C. M. et al. Nature 338, 334–337 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Engel, A. K. et al. Trends Neurosci. 15, 218–226 (1992).

    Article  CAS  Google Scholar 

  9. Llinás, R. & Pare, D. Neuroscience 44, 521–535 (1991).

    Article  Google Scholar 

  10. Sheer, D. E. In Self-regulation of the Brain and Behaviour (eds Elbert, T., Rockstroh, B., Lutzenberger, W. & Birbaumer, N., 64–84 (Springer, Berlin, 1984).

    Book  Google Scholar 

  11. Rougeul, A. et al. Electroenceph. clin. Neurophys. 46, 310–319 (1979).

    Article  CAS  Google Scholar 

  12. Linden, R. D. et al. Electroenceph. clin. Neurophys. 66, 145–159 (1987).

    Article  CAS  Google Scholar 

  13. Galambos, R. in Induced Rhythms in the Brain, (eds Bullock, T. H. & Başar, E., 201–216 Birkhäuser, Boston, 1991).

    Google Scholar 

  14. Kaufman, L. & Williamson, S. J. in Auditory Evoked Magnetic Fields and Electric Potentials (eds Grandori, F., Hoke, M. & Romani, G. L.) 283–312 (Karger, Basel. 1990).

    Google Scholar 

  15. Daubechies, I. IEEE Transactions on Information Theory 36, 961–1005 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  16. Gabor, D. Proc. IEE 93, 429–457 (1946).

    Google Scholar 

  17. Harter, M. R. & Aine, C. J. in Varieties of Attention (eds Parasuraman, R. & Davies, D. R. Academic, London (1984).

    Google Scholar 

  18. Skinner, J. E. & Yingling, C. D. Progr. clin. Neurophys. 1, 30–69 (1977).

    Google Scholar 

  19. Hillyard, S. A. & Mangun, G. R. in Current Trends in Event-Related Potential Research EEG suppl. 40. (eds Johnson, R., Parasuraman, R. & Rohrbaugh, J. W.) 61–67 (Elsevier, Amsterdam 1984).

    Google Scholar 

  20. Oatman, L. Exp. Neurol. 32, 341–356 (1971).

    Article  CAS  Google Scholar 

  21. Ribary, U. et al. Eur. J. Neurosci. Suppl. 1, 44.17 (1988).

    Google Scholar 

  22. Ribary, U. et al. in Advances in Biomagnetism (eds Williamson, S., Hoke, M., Stroink. G. & Kotani, M.) 311–314 (Plenum, New York, 1989).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiitinen, H., Sinkkonen, J., Reinikainen, K. et al. Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364, 59–60 (1993). https://doi.org/10.1038/364059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364059a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing