Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Influences of dopaminergic system dysfunction on late-life depression

Abstract

Deficits in cognition, reward processing, and motor function are clinical features relevant to both aging and depression. Individuals with late-life depression often show impairment across these domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic function declines with normal aging and increased inflammatory burden, the role of dopamine may be particularly salient for late-life depression. We review the literature examining the role of dopamine in the pathogenesis of depression, as well as how dopamine function changes with aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative perspective, we then review work examining how dopaminergic signaling affects these domains, specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a unified model incorporating the effects of aging and low-grade inflammation on dopaminergic functioning, with a resulting negative effect on cognition, reward processing, and motor function. Interplay between these systems may influence development of a depressive phenotype, with an initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into late-life depression while also providing opportunities for novel and personalized interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dopaminergic circuit anatomy.
Fig. 2: Model of dopaminergic system contributions and interactions to behavior in late-life depression.

Similar content being viewed by others

References

  1. Taylor WD. Clinical practice. Depression in the elderly. N. Engl J Med. 2014;371:1228–36.

    CAS  PubMed  Google Scholar 

  2. Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Mol Psychiatry. 2013;18:963–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Byers AL, Yaffe K. Depression and risk of developing dementia. Nat Rev Neurol. 2011;7:323–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hybels CF, Landerman LR, Blazer DG. Age differences in symptom expression in patients with major depression. Int J Geriatr Psychiatry. 2012;27:601–11.

    PubMed  Google Scholar 

  5. Rutherford BR, Taylor WD, Brown PJ, Sneed JR, Roose SP. Biological Aging and the Future of Geriatric Psychiatry. J Gerontol A Biol Sci Med Sci. 2017;72:343–52.

    CAS  PubMed  Google Scholar 

  6. Kaasinen V, Vilkman H, Hietala J, Nagren K, Helenius H, Olsson H, et al. Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiol Aging. 2000;21:683–8.

    CAS  PubMed  Google Scholar 

  7. Seaman KL, Smith CT, Juarez EJ, Dang LC, Castrellon JJ, Burgess LL, et al. Differential regional decline in dopamine receptor availability across adulthood: Linear and nonlinear effects of age. Hum Brain Mapp. 2019;40:3125–38.

    PubMed  PubMed Central  Google Scholar 

  8. Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging. 2017;57:36–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolkowitz OM, Epel ES, Reus VI, Mellon SH. Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety. 2010;27:327–38.

    CAS  PubMed  Google Scholar 

  10. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64:327–37.

    CAS  PubMed  Google Scholar 

  11. Schultz W. Getting formal with dopamine and reward. Neuron. 2002;36:241–63.

    CAS  PubMed  Google Scholar 

  12. Smith CC, Greene RW. CNS dopamine transmission mediated by noradrenergic innervation. J Neurosci. 2012;32:6072–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Devoto P, Flore G. On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? Curr Neuropharmacol. 2006;4:115–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci USA. 2016;113:14835–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamasaki M, Takeuchi T. Locus Coeruleus and Dopamine-Dependent Memory Consolidation. Neural Plast. 2017;2017:8602690.

    PubMed  PubMed Central  Google Scholar 

  16. Nestler EJ, Carlezon WA Jr. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.

    CAS  PubMed  Google Scholar 

  17. Soares-Cunha C, Coimbra B, David-Pereira A, Borges S, Pinto L, Costa P, et al. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation. Nat Commun. 2016;7:11829.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Salamone JD, Pardo M, Yohn SE, Lopez-Cruz L, SanMiguel N, Correa M. Mesolimbic Dopamine and the Regulation of Motivated Behavior. Curr Top. Behav Neurosci. 2016;27:231–57.

    Google Scholar 

  19. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493:537–41.

    CAS  PubMed  Google Scholar 

  20. Pecina M, Sikora M, Avery ET, Heffernan J, Pecina S, Mickey BJ, et al. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: Implications for anhedonia, anxiety and treatment response. Eur Neuropsychopharmacol. 2017;27:977–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyer JH, McNeely HE, Sagrati S, Boovariwala A, Martin K, Verhoeff NP, et al. Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry. 2006;163:1594–602.

    PubMed  Google Scholar 

  22. Hamilton JP, Sacchet MD, Hjornevik T, Chin FT, Shen B, Kampe R, et al. Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent (11)C-raclopride positron emission tomography and functional magnetic resonance imaging investigation. Transl Psychiatry. 2018;8:264.

    PubMed  PubMed Central  Google Scholar 

  23. Parsey RV, Oquendo MA, Zea-Ponce Y, Rodenhiser J, Kegeles LS, Pratap M, et al. Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry. 2001;50:313–22.

    CAS  PubMed  Google Scholar 

  24. Schneier FR, Slifstein M, Whitton AE, Pizzagalli DA, Reinen J, McGrath PJ, et al. Dopamine release in antidepressant-naive major depressive disorder: a multimodal [(11)C]-(+)-PHNO positron emission tomography and functional magnetic resonance imaging study. Biol Psychiatry. 2018;84:563–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Z, He Y, Tang J, Zong X, Hu M, Chen X. Molecular imaging of striatal dopamine transporters in major depression-a meta-analysis. J Affect Disord. 2015;174:137–43.

    CAS  PubMed  Google Scholar 

  26. Pizzagalli DA, Berretta S, Wooten D, Goer F, Pilobello KT, Kumar P, et al. Assessment of striatal dopamine transporter binding in individuals with major depressive disorder: in vivo positron emission tomography and postmortem evidence. JAMA psychiatry. 2019;76:854–61.

    PubMed  PubMed Central  Google Scholar 

  27. Dubol M, Trichard C, Leroy C, Granger B, Tzavara ET, Martinot JL, et al. Lower midbrain dopamine transporter availability in depressed patients: report from high-resolution PET imaging. J Affect Disord. 2020;262:273–7.

    CAS  PubMed  Google Scholar 

  28. Moriya H, Tiger M, Tateno A, Sakayori T, Masuoka T, Kim W, et al. Low dopamine transporter binding in the nucleus accumbens in geriatric patients with severe depression. Psychiatry Clin Neurosci. 2020;74:424–30.

    CAS  PubMed  Google Scholar 

  29. Zhang WN, Chang SH, Guo LY, Zhang KL, Wang J. The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies. J Affect Disord. 2013;151:531–9.

    PubMed  Google Scholar 

  30. Keren H, O’Callaghan G, Vidal-Ribas P, Buzzell GA, Brotman MA, Leibenluft E, et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am J Psychiatry. 2018;175:1111–20.

    PubMed  PubMed Central  Google Scholar 

  31. van Dyck CH, Arnsten AFT, Padala PR, Brawman-Mintzer O, Lerner AJ, Porsteinsson AP, et al. Neurobiologic rationale for treatment of apathy in Alzheimer’s disease with methylphenidate. Am J Geriatr Psychiatry. 2021;29:51–62.

    PubMed  Google Scholar 

  32. Yuen GS, Bhutani S, Lucas BJ, Gunning FM, AbdelMalak B, Seirup JK, et al. Apathy in late-life depression: common, persistent, and disabling. Am J Geriatr Psychiatry. 2015;23:488–94.

    PubMed  Google Scholar 

  33. Krishnan KRR, Hays JC, Tupler LA, George LK, Blazer DG. Clinical and phenomenological comparisons of late-onset and early-onset depression. Am J Psychiatry. 1995;152:785–8.

    CAS  PubMed  Google Scholar 

  34. Mehta M, Whyte E, Lenze E, Hardy S, Roumani Y, Subashan P, et al. Depressive symptoms in late life: associations with apathy, resilience and disability vary between young-old and old-old. Int J Geriatr Psychiatry. 2008;23:238–43.

    PubMed  Google Scholar 

  35. Stark AK, Pakkenberg B. Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res. 2004;318:81–92.

    CAS  PubMed  Google Scholar 

  36. Siddiqi Z, Kemper TL, Killiany R. Age-related neuronal loss from the substantia nigra-pars compacta and ventral tegmental area of the rhesus monkey. J Neuropathol Exp Neurol. 1999;58:959–71.

    CAS  PubMed  Google Scholar 

  37. Wong KK, Muller ML, Kuwabara H, Studenski SA, Bohnen NI. Olfactory loss and nigrostriatal dopaminergic denervation in the elderly. Neurosci Lett. 2010;484:163–7.

    CAS  PubMed  Google Scholar 

  38. Eckart C, Bunzeck N. Dopamine modulates processing speed in the human mesolimbic system. NeuroImage. 2013;66:293–300.

    CAS  PubMed  Google Scholar 

  39. van Dyck CH, Avery RA, MacAvoy MG, Marek KL, Quinlan DM, Baldwin RM, et al. Striatal dopamine transporters correlate with simple reaction time in elderly subjects. Neurobiol Aging. 2008;29:1237–46.

    PubMed  Google Scholar 

  40. Yang YK, Chiu NT, Chen CC, Chen M, Yeh TL, Lee IH. Correlation between fine motor activity and striatal dopamine D2 receptor density in patients with schizophrenia and healthy controls. Psychiatry Res. 2003;123:191–7.

    CAS  PubMed  Google Scholar 

  41. Cham R, Perera S, Studenski SA, Bohnen NI. Striatal dopamine denervation and sensory integration for balance in middle-aged and older adults. Gait Posture. 2007;26:516–25.

    PubMed  Google Scholar 

  42. Cham R, Studenski SA, Perera S, Bohnen NI. Striatal dopaminergic denervation and gait in healthy adults. Exp Brain Res. 2008;185:391–8.

    CAS  PubMed  Google Scholar 

  43. Bohnen NI, Albin RL, Koeppe RA, Wernette KA, Kilbourn MR, Minoshima S, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab. 2006;26:1198–212.

    CAS  PubMed  Google Scholar 

  44. Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Zald DH. Associations between dopamine D2 receptor availability and BMI depend on age. NeuroImage. 2016;138:176–83.

    CAS  PubMed  Google Scholar 

  45. Castrellon JJ, Seaman KL, Crawford JL, Young JS, Smith CT, Dang LC, et al. Individual differences in dopamine are associated with reward discounting in clinical groups but not in healthy adults. J Neurosci. 2019;39:321–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Volkow ND, Wang GJ, Fowler JS, Ding YS, Gur RC, Gatley J, et al. Parallel loss of presynaptic and postsynaptic dopamine markers in normal aging. Ann Neurol. 1998;44:143–7.

    CAS  PubMed  Google Scholar 

  47. Rudow G, O’Brien R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O, et al. Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol. 2008;115:461–70.

    PubMed  PubMed Central  Google Scholar 

  48. Roubenoff R, Harris TB, Abad LW, Wilson PW, Dallal GE, Dinarello CA. Monocyte cytokine production in an elderly population: effect of age and inflammation. J Gerontol A Biol Sci Med Sci. 1998;53:M20–6.

    CAS  PubMed  Google Scholar 

  49. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N. Y Acad Sci. 2000;908:244–54.

    CAS  PubMed  Google Scholar 

  50. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69Suppl:S4–9.

    PubMed  Google Scholar 

  51. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Alexopoulos GS, Morimoto SS. The inflammation hypothesis in geriatric depression. Int J Geriatr Psychiatry. 2011;26:1109–18.

    PubMed  PubMed Central  Google Scholar 

  53. Martinez-Cengotitabengoa M, Carrascon L, O’Brien JT, Diaz-Gutierrez MJ, Bermudez-Ampudia C, Sanada K, et al. Peripheral Inflammatory Parameters in Late-Life Depression: A Systematic Review. Int J Mol Sci. 2016;17:2022. https://doi.org/10.3390/ijms17122022.

    Article  CAS  PubMed Central  Google Scholar 

  54. Ershler WB. Interleukin-6: a cytokine for gerontologists. J Am Geriatr Soc. 1993;41:176–81.

    CAS  PubMed  Google Scholar 

  55. Sparkman NL, Johnson RW. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation. 2008;15:323–30.

    CAS  PubMed  Google Scholar 

  56. Taylor WD, McQuoid DR, Payne ME, Zannas AS, MacFall JR, Steffens DC. Hippocampus atrophy and the longitudinal course of late-life depression. Am J Geriatr Psychiatry. 2014;22:1504–12.

    PubMed  Google Scholar 

  57. Satizabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C. Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon Study. Neurology. 2012;78:720–7.

    CAS  PubMed  Google Scholar 

  58. Gimeno D, Kivimaki M, Brunner EJ, Elovainio M, De Vogli R, Steptoe A, et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol Med. 2009;39:413–23.

    CAS  PubMed  Google Scholar 

  59. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140:774–815.

    PubMed  PubMed Central  Google Scholar 

  61. Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry. 2011;70:175–82.

    CAS  PubMed  Google Scholar 

  62. Felger JC, Miller AH. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol. 2012;33:315–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology. 2017;42:216–41.

    CAS  PubMed  Google Scholar 

  64. Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B, et al. Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology. 2007;32:2384–92.

    CAS  PubMed  Google Scholar 

  65. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, et al. Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry. 2012;69:1044–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry. 2010;68:748–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry. 2009;66:407–14.

    PubMed  PubMed Central  Google Scholar 

  68. Dipasquale O, Cooper EA, Tibble J, Voon V, Baglio F, Baselli G, et al. Interferon-alpha acutely impairs whole-brain functional connectivity network architecture - A preliminary study. Brain Behav Immun. 2016;58:31–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Keller AS, Leikauf JE, Holt-Gosselin B, Staveland BR, Williams LM. Paying attention to attention in depression. Transl Psychiatry. 2019;9:279.

    PubMed  PubMed Central  Google Scholar 

  70. Serra-Blasco M, Torres IJ, Vicent-Gil M, Goldberg X, Navarra-Ventura G, Aguilar E, et al. Discrepancy between objective and subjective cognition in major depressive disorder. Eur Neuropsychopharmacol. 2019;29:46–56.

    CAS  PubMed  Google Scholar 

  71. Petersen JZ, Porter RJ, Miskowiak KW. Clinical characteristics associated with the discrepancy between subjective and objective cognitive impairment in depression. J Affect Disord. 2019;246:763–74.

    CAS  PubMed  Google Scholar 

  72. DeJong H, Fox E, Stein A. Does rumination mediate the relationship between attentional control and symptoms of depression? J Behav Ther Exp Psychiatry. 2019;63:28–35.

    PubMed  PubMed Central  Google Scholar 

  73. Hendricks MA, Buchanan TW. Individual differences in cognitive control processes and their relationship to emotion regulation. Cogn Emot. 2016;30:912–24.

    PubMed  Google Scholar 

  74. Gandelman JA, Albert K, Boyd BD, Park JW, Riddle M, Woodward ND, et al. Intrinsic functional network connectivity is associated with clinical symptoms and cognition in late-life depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:160–70.

    PubMed  Google Scholar 

  75. Alexopoulos GS, Kiosses DN, Heo M, Murphy CF, Shanmugham B, Gunning-Dixon F. Executive dysfunction and the course of geriatric depression. Biol Psychiatry. 2005;58:204–10.

    PubMed  Google Scholar 

  76. Butters MA, Whyte EM, Nebes RD, Begley AE, Dew MA, Mulsant BH, et al. The nature and determinants of neuropsychological functioning in late-life depression. Arch Gen Psychiatry. 2004;61:587–95.

    PubMed  Google Scholar 

  77. Pimontel MA, Culang-Reinlieb ME, Morimoto SS, Sneed JR. Executive dysfunction and treatment response in late-life depression. Int J Geriatr Psychiatry. 2012;27:893–9.

    PubMed  Google Scholar 

  78. Grahek I, Shenhav A, Musslick S, Krebs RM, Koster EHW. Motivation and cognitive control in depression. Neurosci Biobehav Rev. 2019;102:371–81.

    PubMed  PubMed Central  Google Scholar 

  79. Botvinick M, Braver T. Motivation and cognitive control: from behavior to neural mechanism. Annu Rev Psychol. 2015;66:83–113.

    PubMed  Google Scholar 

  80. Christman S, Bermudez C, Hao L, Landman BA, Boyd B, Albert K, et al. Accelerated brain aging predicts impaired cognitive performance and greater disability in geriatric but not midlife adult depression. Transl Psychiatry. 2020;10:317.

    PubMed  PubMed Central  Google Scholar 

  81. Respino M, Jaywant A, Kuceyeski A, Victoria LW, Hoptman MJ, Scult MA, et al. The impact of white matter hyperintensities on the structural connectome in late-life depression: Relationship to executive functions. Neuroimage Clin. 2019;23:101852.

    PubMed  PubMed Central  Google Scholar 

  82. Sheline YI, Barch DM, Garcia K, Gersing K, Piper C, Welsh-Bohmer KA, et al. Cognitive function in late life depression: relationships to depression severity, cerebrovascular risk factors and processing speed. Biol Psychiatry. 2006;60:58–65.

    PubMed  Google Scholar 

  83. Nebes RD, Butters MA, Mulsant BH, Pollock BG, Zmuda MD, Houck PR, et al. Decreased working memory and processing speed mediate cognitive impairment in geriatric depression. Psychological Med. 2000;30:679–91.

    CAS  Google Scholar 

  84. Lindenberger U, Mayr U, Kliegl R. Speed and intelligence in old age. Psychol Aging. 1993;8:207–20.

    CAS  PubMed  Google Scholar 

  85. Sliwinski M, Buschke H. Processing speed and memory in aging and dementia. J Gerontol B Psychol Sci Soc Sci. 1997;52:P308–18.

    CAS  PubMed  Google Scholar 

  86. Brown PJ, Liu X, Sneed JR, Pimontel MA, Devanand DP, Roose SP. Speed of processing and depression affect function in older adults with mild cognitive impairment. Am J Geriatr Psychiatry. 2013;21:675–84.

    PubMed  PubMed Central  Google Scholar 

  87. Rapp MA, Reischies FM. Attention and executive control predict Alzheimer disease in late life: results from the Berlin Aging Study (BASE). Am J Geriatr Psychiatry. 2005;13:134–41.

    PubMed  Google Scholar 

  88. Backman L, Lindenberger U, Li SC, Nyberg L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev. 2010;34:670–7.

    PubMed  Google Scholar 

  89. Juarez EJ, Castrellon JJ, Green MA, Crawford JL, Seaman KL, Smith CT, et al. Reproducibility of the correlative triad among aging, dopamine receptor availability, and cognition. Psychol Aging. 2019;34:921–32.

    PubMed  PubMed Central  Google Scholar 

  90. Salami A, Garrett DD, Wahlin A, Rieckmann A, Papenberg G, Karalija N, et al. Dopamine D2/3 binding potential modulates neural signatures of working memory in a load-dependent fashion. J Neurosci. 2019;39:537–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Karlsson S, Nyberg L, Karlsson P, Fischer H, Thilers P, Macdonald S, et al. Modulation of striatal dopamine D1 binding by cognitive processing. NeuroImage. 2009;48:398–404.

    PubMed  Google Scholar 

  92. Backman L, Ginovart N, Dixon RA, Wahlin TB, Wahlin A, Halldin C, et al. Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry. 2000;157:635–7.

    CAS  PubMed  Google Scholar 

  93. Volkow ND, Gur RC, Wang GJ, Fowler JS, Moberg PJ, Ding YS, et al. Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry. 1998;155:344–9.

    CAS  PubMed  Google Scholar 

  94. Backman L, Karlsson S, Fischer H, Karlsson P, Brehmer Y, Rieckmann A, et al. Dopamine D(1) receptors and age differences in brain activation during working memory. Neurobiol Aging. 2011;32:1849–56.

    PubMed  Google Scholar 

  95. Erixon-Lindroth N, Farde L, Wahlin TB, Sovago J, Halldin C, Backman L. The role of the striatal dopamine transporter in cognitive aging. Psychiatry Res. 2005;138:1–12.

    CAS  PubMed  Google Scholar 

  96. Nyberg L, Karalija N, Salami A, Andersson M, Wahlin A, Kaboovand N, et al. Dopamine D2 receptor availability is linked to hippocampal-caudate functional connectivity and episodic memory. Proc Natl Acad Sci USA. 2016;113:7918–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lovden M, Karalija N, Andersson M, Wahlin A, Axelsson J, Kohncke Y, et al. Latent-profile analysis reveals behavioral and brain correlates of dopamine-cognition associations. Cereb Cortex. 2018;28:3894–907.

    PubMed  Google Scholar 

  98. Rutherford BR, Slifstein M, Chen C, Abi-Dargham A, Brown PJ, Wall MW, et al. Effects of L-DOPA monotherapy on psychomotor speed and [(11)C]raclopride binding in high-risk older adults with depression. Biol Psychiatry. 2019;86:221–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Roy MA, Doiron M, Talon-Croteau J, Dupre N, Simard M. Effects of antiparkinson medication on cognition in Parkinson’s disease: a systematic review. Can J Neurol Sci. 2018;45:375–404.

    PubMed  Google Scholar 

  100. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–72.

    CAS  PubMed  Google Scholar 

  101. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci USA. 2010;107:7036–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59:371–8.

    CAS  PubMed  Google Scholar 

  104. Wright CB, Sacco RL, Rundek T, Delman J, Rabbani L, Elkind M. Interleukin-6 is associated with cognitive function: the Northern Manhattan Study. J Stroke Cerebrovasc Dis. 2006;15:34–8.

    PubMed  PubMed Central  Google Scholar 

  105. Heringa SM, van den Berg E, Reijmer YD, Nijpels G, Stehouwer CD, Schalkwijk CG, et al. Markers of low-grade inflammation and endothelial dysfunction are related to reduced information processing speed and executive functioning in an older population - the Hoorn Study. Psychoneuroendocrinology. 2014;40:108–18.

    CAS  PubMed  Google Scholar 

  106. Marsland AL, Gianaros PJ, Kuan DC, Sheu LK, Krajina K, Manuck SB. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav Immun. 2015;48:195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bremmer MA, Beekman AT, Deeg DJ, Penninx BW, Dik MG, Hack CE, et al. Inflammatory markers in late-life depression: results from a population-based study. J Affect Disord. 2008;106:249–55.

    CAS  PubMed  Google Scholar 

  108. Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu Rev Clin Psychol. 2014;10:393–423.

    PubMed  PubMed Central  Google Scholar 

  109. Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression. Neuropsychopharmacology. 2004;29:1765–81.

    CAS  PubMed  Google Scholar 

  110. Treadway MT, Bossaller NA, Shelton RC, Zald DH. Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. J Abnorm Psychol. 2012;121:553–8.

    PubMed  PubMed Central  Google Scholar 

  111. Kunisato Y, Okamoto Y, Ueda K, Onoda K, Okada G, Yoshimura S, et al. Effects of depression on reward-based decision making and variability of action in probabilistic learning. J Behav Ther Exp Psychiatry. 2012;43:1088–94.

    PubMed  Google Scholar 

  112. Rizvi SJ, Pizzagalli DA, Sproule BA, Kennedy SH. Assessing anhedonia in depression: potentials and pitfalls. Neurosci Biobehav Rev. 2016;65:21–35.

    PubMed  PubMed Central  Google Scholar 

  113. Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev. 2011;35:537–55.

    PubMed  Google Scholar 

  114. Halahakoon DC, Kieslich K, O’Driscoll C, Nair A, Lewis G, Roiser JP. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiatry. 2020;77:1286–95.

    PubMed  PubMed Central  Google Scholar 

  115. Husain M, Roiser JP. Neuroscience of apathy and anhedonia: a transdiagnostic approach. Nat Rev Neurosci. 2018;19:470–84.

    CAS  PubMed  Google Scholar 

  116. Rangel A, Camerer C, Montague PR. A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci. 2008;9:545–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76:470–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kable JW, Glimcher PW. The neurobiology of decision: consensus and controversy. Neuron. 2009;63:733–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Suzuki S, Lawlor VM, Cooper JA, Arulpragasam AR, Treadway MT. Distinct regions of the striatum underlying effort, movement initiation and effort discounting. Nat Hum Behav. 2021;5:378–88.

    PubMed  Google Scholar 

  120. Alexopoulos GS, Hoptman MJ, Yuen G, Kanellopoulos D, Seirup JK, Lim KO, et al. Functional connectivity in apathy of late-life depression: a preliminary study. J Affect Disord. 2013;149:398–405.

    PubMed  Google Scholar 

  121. Friston K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 2005;360:815–36.

    PubMed  PubMed Central  Google Scholar 

  122. den Ouden HE, Kok P, de Lange FP. How prediction errors shape perception, attention, and motivation. Front Psychol. 2012;3:548.

    Google Scholar 

  123. Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH. A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci. 2013;16:966–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wise RA. Dopamine, learning, and motivation. Nat Rev Neurosci. 2004;5:483–94.

    CAS  PubMed  Google Scholar 

  125. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R, Vander Weele CM, et al. Mesolimbic dopamine signals the value of work. Nat Neurosci. 2016;19:117–26.

    CAS  PubMed  Google Scholar 

  126. Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 2013;500:575–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Berke JD. What does dopamine mean? Nat Neurosci. 2018;21:787–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. du Hoffmann J, Nicola SM. Dopamine invigorates reward seeking by promoting cue-evoked excitation in the nucleus accumbens. J Neurosci. 2014;34:14349–64.

    PubMed  PubMed Central  Google Scholar 

  129. Niv Y, Daw ND, Joel D, Dayan P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology. 2007;191:507–20.

    CAS  PubMed  Google Scholar 

  130. Satoh T, Nakai S, Sato T, Kimura M. Correlated coding of motivation and outcome of decision by dopamine neurons. J Neurosci. 2003;23:9913–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Castrellon JJ, Meade J, Greenwald L, Hurst K, Samanez-Larkin GR. Dopaminergic modulation of reward discounting in healthy rats: a systematic review and meta-analysis. Psychopharmacology. 2021;238:711–23.

    CAS  PubMed  Google Scholar 

  132. Walton ME, Bouret S. What is the relationship between dopamine and effort? Trends Neurosci. 2019;42:79–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tanaka S, O’Doherty JP, Sakagami M. The cost of obtaining rewards enhances the reward prediction error signal of midbrain dopamine neurons. Nat Commun. 2019;10:3674.

    PubMed  PubMed Central  Google Scholar 

  134. Huys QJ, Pizzagalli DA, Bogdan R, Dayan P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord. 2013;3:12.

    PubMed  PubMed Central  Google Scholar 

  135. Yang XH, Huang J, Zhu CY, Wang YF, Cheung EF, Chan RC, et al. Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Res. 2014;220:874–82.

    PubMed  Google Scholar 

  136. Clery-Melin ML, Schmidt L, Lafargue G, Baup N, Fossati P, Pessiglione M. Why don’t you try harder? An investigation of effort production in major depression. PLoS ONE. 2011;6:e23178.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hershenberg R, Satterthwaite TD, Daldal A, Katchmar N, Moore TM, Kable JW, et al. Diminished effort on a progressive ratio task in both unipolar and bipolar depression. J Affect Disord. 2016;196:97–100.

    PubMed  PubMed Central  Google Scholar 

  138. Pizzagalli DA, Iosifescu D, Hallett LA, Ratner KG, Fava M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J Psychiatr Res. 2008;43:76–87.

    PubMed  PubMed Central  Google Scholar 

  139. Vrieze E, Pizzagalli DA, Demyttenaere K, Hompes T, Sienaert P, de Boer P, et al. Reduced reward learning predicts outcome in major depressive disorder. Biol Psychiatry. 2013;73:639–45.

    PubMed  Google Scholar 

  140. Dombrovski AY, Siegle GJ, Szanto K, Clark L, Reynolds CF, Aizenstein H. The temptation of suicide: striatal gray matter, discounting of delayed rewards, and suicide attempts in late-life depression. Psychol Med. 2012;42:1203–15.

    CAS  PubMed  Google Scholar 

  141. Samanez-Larkin GR, Gibbs SE, Khanna K, Nielsen L, Carstensen LL, Knutson B. Anticipation of monetary gain but not loss in healthy older adults. Nat Neurosci. 2007;10:787–91.

    PubMed  PubMed Central  Google Scholar 

  142. Rademacher L, Salama A, Grunder G, Spreckelmeyer KN. Differential patterns of nucleus accumbens activation during anticipation of monetary and social reward in young and older adults. Soc Cogn Affect Neurosci. 2014;9:825–31.

    PubMed  Google Scholar 

  143. Eppinger B, Hammerer D, Li SC. Neuromodulation of reward-based learning and decision making in human aging. Ann N. Y Acad Sci. 2011;1235:1–17.

    PubMed  PubMed Central  Google Scholar 

  144. Seaman KL, Brooks N, Karrer TM, Castrellon JJ, Perkins SF, Dang LC, et al. Subjective value representations during effort, probability and time discounting across adulthood. Soc Cogn Affect Neurosci. 2018;13:449–59.

    PubMed  PubMed Central  Google Scholar 

  145. Halfmann K, Hedgcock W, Kable J, Denburg NL. Individual differences in the neural signature of subjective value among older adults. Soc Cogn Affect Neurosci. 2016;11:1111–20.

    PubMed  Google Scholar 

  146. Hess TM, Smith BT, Sharifian N. Aging and effort expenditure: the impact of subjective perceptions of task demands. Psychol Aging. 2016;31:653–60.

    PubMed  PubMed Central  Google Scholar 

  147. Devine ST, Neumann C, Otto AR, Bolenz F, Reiter AM, Eppinger B. Seizing the opportunity: Lifespan differences in the effects of the opportunity cost of time on cognitive control. Cognition. 2021;216:104863. https://doi.org/10.1016/j.cognition.2021.104863.

    Article  PubMed  Google Scholar 

  148. Manty M, de Leon CF, Rantanen T, Era P, Pedersen AN, Ekmann A, et al. Mobility-related fatigue, walking speed, and muscle strength in older people. J Gerontol A Biol Sci Med Sci. 2012;67:523–9.

    PubMed  Google Scholar 

  149. Avlund K, Rantanen T, Schroll M. Tiredness and subsequent disability in older adults: the role of walking limitations. J Gerontol A Biol Sci Med Sci. 2006;61:1201–5.

    PubMed  Google Scholar 

  150. Salamone JD, Correa M, Yohn S, Lopez Cruz L, San Miguel N, Alatorre L. The pharmacology of effort-related choice behavior: dopamine, depression, and individual differences. Behav Process. 2016;127:3–17.

    Google Scholar 

  151. Robles CF, Johnson AW. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor. Behav Brain Res. 2017;320:431–9.

    CAS  PubMed  Google Scholar 

  152. Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011;31:16597–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci. 2012;32:6170–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Caravaggio F, Fervaha G, Browne CJ, Gerretsen P, Remington G, Graff-Guerrero A. Reward motivation in humans and its relationship to dopamine D2/3 receptor availability: A pilot study with dual [(11)C]-raclopride and [(11)C]-(+)-PHNO imaging. J Psychopharmacol. 2018;32:357–66.

    CAS  PubMed  Google Scholar 

  155. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, et al. A selective role for dopamine in stimulus-reward learning. Nature. 2011;469:53–7.

    CAS  PubMed  Google Scholar 

  156. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006;442:1042–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Chowdhury R, Guitart-Masip M, Lambert C, Dayan P, Huys Q, Duzel E, et al. Dopamine restores reward prediction errors in old age. Nat Neurosci. 2013;16:648–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Beierholm U, Guitart-Masip M, Economides M, Chowdhury R, Duzel E, Dolan R, et al. Dopamine modulates reward-related vigor. Neuropsychopharmacology. 2013;38:1495–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Michely J, Viswanathan S, Hauser TU, Delker L, Dolan RJ, Grefkes C. The role of dopamine in dynamic effort-reward integration. Neuropsychopharmacology. 2020;45:1448–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hofmans L, Papadopetraki D, van den Bosch R, Maatta JI, Frobose MI, Zandbelt BB, et al. Methylphenidate boosts choices of mental labor over leisure depending on striatal dopamine synthesis capacity. Neuropsychopharmacology. 2020;45:2170–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Westbrook A, van den Bosch R, Maatta JI, Hofmans L, Papadopetraki D, Cools R, et al. Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science. 2020;367:1362–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Sharp ME, Foerde K, Daw ND, Shohamy D. Dopamine selectively remediates ‘model-based’ reward learning: a computational approach. Brain. 2016;139:355–64.

    PubMed  Google Scholar 

  163. Foerde K, Figner B, Doll BB, Woyke IC, Braun EK, Weber EU, et al. Dopamine modulation of intertemporal decision-making: evidence from Parkinson disease. J Cogn Neurosci. 2016;28:657–67.

    PubMed  Google Scholar 

  164. Chong TT, Bonnelle V, Manohar S, Veromann KR, Muhammed K, Tofaris GK, et al. Dopamine enhances willingness to exert effort for reward in Parkinson’s disease. Cortex. 2015;69:40–6.

    PubMed  PubMed Central  Google Scholar 

  165. Muhammed K, Manohar S, Ben Yehuda M, Chong TT, Tofaris G, Lennox G, et al. Reward sensitivity deficits modulated by dopamine are associated with apathy in Parkinson’s disease. Brain. 2016;139:2706–21.

    PubMed  PubMed Central  Google Scholar 

  166. Panigrahi B, Martin KA, Li Y, Graves AR, Vollmer A, Olson L, et al. Dopamine is required for the neural representation and control of movement vigor. Cell. 2015;162:1418–30.

    CAS  PubMed  Google Scholar 

  167. Liu Y, Admon R, Mellem MS, Belleau EL, Kaiser RH, Clegg R, et al. Machine learning identifies large-scale reward-related activity modulated by dopaminergic enhancement in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:163–72.

    PubMed  Google Scholar 

  168. Rengasamy M, Marsland A, McClain L, Kovats T, Walko T, Pan L, et al. Longitudinal relationships of cytokines, depression and anhedonia in depressed adolescents. Brain Behav Immun. 2021;91:74–80.

    CAS  PubMed  Google Scholar 

  169. Felger JC, Haroon E, Patel TA, Goldsmith DR, Wommack EC, Woolwine BJ, et al. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol Psychiatry. 2020;25:1301–11.

    CAS  PubMed  Google Scholar 

  170. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA psychiatry. 2013;70:31–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Lee Y, Mansur RB, Brietzke E, Carmona NE, Subramaniapillai M, Pan Z, et al. Efficacy of adjunctive infliximab vs. placebo in the treatment of anhedonia in bipolar I/II depression. Brain Behav Immun. 2020;88:631–9.

    CAS  PubMed  Google Scholar 

  172. Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry. 2016;21:1358–65.

    CAS  PubMed  Google Scholar 

  173. Yin L, Xu X, Chen G, Mehta ND, Haroon E, Miller AH, et al. Inflammation and decreased functional connectivity in a widely-distributed network in depression: Centralized effects in the ventral medial prefrontal cortex. Brain Behav Immun. 2019;80:657–66.

    PubMed  PubMed Central  Google Scholar 

  174. Burrows K, Stewart JL, Kuplicki R, Figueroa-Hall L, Spechler PA, Zheng H, et al. Elevated peripheral inflammation is associated with attenuated striatal reward anticipation in major depressive disorder. Brain Behav Immun. 2021;93:214–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Seidler RD, Alberts JL, Stelmach GE. Changes in multi-joint performance with age. Mot Control. 2002;6:19–31.

    Google Scholar 

  176. Nevitt MC, Cummings SR, Kidd S, Black D. Risk factors for recurrent nonsyncopal falls. A prospective study. Jama. 1989;261:2663–8.

    CAS  PubMed  Google Scholar 

  177. Karpman C, DePew ZS, LeBrasseur NK, Novotny PJ, Benzo RP. Determinants of gait speed in COPD. Chest. 2014;146:104–10.

    PubMed  PubMed Central  Google Scholar 

  178. Dawson J, Linsell L, Zondervan K, Rose P, Randall T, Carr A, et al. Epidemiology of hip and knee pain and its impact on overall health status in older adults. Rheumatology. 2004;43:497–504.

    CAS  PubMed  Google Scholar 

  179. Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci. 2009;64:896–901.

    PubMed  Google Scholar 

  180. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55:M221–31.

    CAS  PubMed  Google Scholar 

  181. Penninx BW, Ferrucci L, Leveille SG, Rantanen T, Pahor M, Guralnik JM. Lower extremity performance in nondisabled older persons as a predictor of subsequent hospitalization. J Gerontol A Biol Sci Med Sci. 2000;55:M691–7.

    CAS  PubMed  Google Scholar 

  182. Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging. 2009;13:881–9.

    CAS  PubMed  Google Scholar 

  183. White DK, Neogi T, Nevitt MC, Peloquin CE, Zhu Y, Boudreau RM, et al. Trajectories of gait speed predict mortality in well-functioning older adults: the Health, Aging and Body Composition study. J Gerontol A Biol Sci Med Sci. 2013;68:456–64.

    PubMed  Google Scholar 

  184. Montero-Odasso M, Schapira M, Soriano ER, Varela M, Kaplan R, Camera LA, et al. Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J Gerontol A Biol Sci Med Sci. 2005;60:1304–9.

    PubMed  Google Scholar 

  185. Demakakos P, Cooper R, Hamer M, de Oliveira C, Hardy R, Breeze E. The bidirectional association between depressive symptoms and gait speed: evidence from the English Longitudinal Study of Ageing (ELSA). PLoS ONE. 2013;8:e68632.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Sanders JB, Bremmer MA, Deeg DJ, Beekman AT. Do depressive symptoms and gait speed impairment predict each other’s incidence? A 16-year prospective study in the community. J Am Geriatr Soc. 2012;60:1673–80.

    PubMed  Google Scholar 

  187. Stahl ST, Altmann HM, Dew MA, Albert SM, Butters M, Gildengers A, et al. The effects of gait speed and psychomotor speed on risk for depression and anxiety in older adults with medical comorbidities. J Am Geriatr Soc. 2021;69:1265–71.

    PubMed  PubMed Central  Google Scholar 

  188. Rosario BL, Rosso AL, Aizenstein HJ, Harris T, Newman AB, Satterfield S, et al. Cerebral white matter and slow gait: contribution of hyperintensities and normal-appearing parenchyma. J Gerontol A Biol Sci Med Sci. 2016;71:968–73.

    PubMed  PubMed Central  Google Scholar 

  189. Sanders JB, Bremmer MA, Comijs HC, van de Ven PM, Deeg DJH, Beekman ATF. Gait speed and processing speed as clinical markers for geriatric health outcomes. Am J Geriatr Psychiatry. 2017;25:374–85.

    PubMed  Google Scholar 

  190. Brown PJ, Roose SP, Zhang J, Wall M, Rutherford BR, Ayonayon HN, et al. Inflammation, depression, and slow gait: a high mortality phenotype in later life. J Gerontol A Biol Sci Med Sci. 2016;71:221–7.

    PubMed  Google Scholar 

  191. Cham R, Perera S, Studenski SA, Bohnen NI. Age-related striatal dopaminergic denervation and severity of a slip perturbation. J Gerontol A Biol Sci Med Sci. 2011;66:980–5.

    PubMed  Google Scholar 

  192. Bohnen NI, Muller ML, Kuwabara H, Cham R, Constantine GM, Studenski SA. Age-associated striatal dopaminergic denervation and falls in community-dwelling subjects. J Rehabil Res Dev. 2009;46:1045–52.

    PubMed  PubMed Central  Google Scholar 

  193. Calvani R, Marini F, Cesari M, Buford TW, Manini TM, Pahor M, et al. Systemic inflammation, body composition, and physical performance in old community-dwellers. J Cachexia Sarcopenia Muscle. 2017;8:69–77.

    PubMed  Google Scholar 

  194. Penninx BW, Kritchevsky SB, Newman AB, Nicklas BJ, Simonsick EM, Rubin S, et al. Inflammatory markers and incident mobility limitation in the elderly. J Am Geriatr Soc. 2004;52:1105–13.

    PubMed  Google Scholar 

  195. Verghese J, Holtzer R, Oh-Park M, Derby CA, Lipton RB, Wang C. Inflammatory markers and gait speed decline in older adults. J Gerontol A Biol Sci Med Sci. 2011;66:1083–9.

    PubMed  Google Scholar 

  196. Majer M, Welberg LA, Capuron L, Pagnoni G, Raison CL, Miller AH. IFN-alpha-induced motor slowing is associated with increased depression and fatigue in patients with chronic hepatitis C. Brain Behav Immun. 2008;22:870–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev. 2017;36:1–10.

    PubMed  Google Scholar 

  198. Verghese J, Holtzer R, Lipton RB, Wang C. High-sensitivity C-reactive protein and mobility disability in older adults. Age Ageing. 2012;41:541–5.

    PubMed  PubMed Central  Google Scholar 

  199. Custodero C, Anton SD, Beavers DP, Mankowski RT, Lee SA, McDermott MM, et al. The relationship between interleukin-6 levels and physical performance in mobility-limited older adults with chronic low-grade inflammation: The ENRGISE Pilot study. Arch Gerontol Geriatr. 2020;90:104131.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Rong YD, Bian AL, Hu HY, Ma Y, Zhou XZ. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 2018;18:308.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Westbrook A, Kester D, Braver TS. What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLoS ONE. 2013;8:e68210.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yee DM, Adams S, Beck A, Braver TS. Age-related differences in motivational integration and cognitive control. Cogn Affect Behav Neurosci. 2019;19:692–714.

    PubMed  PubMed Central  Google Scholar 

  203. Locke HS, Braver TS. Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cogn Affect Behav Neurosci. 2008;8:99–112.

    PubMed  Google Scholar 

  204. Shohamy D, Wagner AD. Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron. 2008;60:378–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Camicioli R, Wang Y, Powell C, Mitnitski A, Rockwood K. Gait and posture impairment, parkinsonism and cognitive decline in older people. J Neural Transm. 2007;114:1355–61.

    CAS  PubMed  Google Scholar 

  206. Thompson PD. Gait disorders accompanying diseases of the frontal lobes. Adv Neurol. 2001;87:235–41.

    CAS  PubMed  Google Scholar 

  207. Holtzer R, Verghese J, Xue X, Lipton RB. Cognitive processes related to gait velocity: results from the Einstein Aging Study. Neuropsychology. 2006;20:215–23.

    PubMed  Google Scholar 

  208. Belur P, Hsiao D, Myers PS, Earhart GM, Rawson KS. Dual-task costs of texting while walking forward and backward are greater for older adults than younger adults. Hum Mov Sci. 2020;71:102619.

    PubMed  Google Scholar 

  209. Galaro JK, Celnik P, Chib VS. Motor cortex excitability reflects the subjective value of reward and mediates its effects on incentive-motivated performance. J Neurosci. 2019;39:1236–48.

    PubMed  PubMed Central  Google Scholar 

  210. Summa S, Tamagnone I, Asprea G, Capurro C, Sanguineti V. Modulation of motor performance by a monetary incentive: a pilot study. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:238–41.

    Google Scholar 

  211. Cusin C, Iovieno N, Iosifescu DV, Nierenberg AA, Fava M, Rush AJ, et al. A randomized, double-blind, placebo-controlled trial of pramipexole augmentation in treatment-resistant major depressive disorder. J Clin Psychiatry. 2013;74:e636–41.

    CAS  PubMed  Google Scholar 

  212. Gershon AA, Amiaz R, Shem-David H, Grunhaus L. Ropinirole augmentation for depression: a randomized controlled trial pilot study. J Clin Psychopharmacol. 2019;39:78–81.

    CAS  PubMed  Google Scholar 

  213. Lavretsky H, Reinlieb M, St Cyr N, Siddarth P, Ercoli LM, Senturk D. Citalopram, methylphenidate, or their combination in geriatric depression: a randomized, double-blind, placebo-controlled trial. Am J Psychiatry. 2015;172:561–9.

    PubMed  PubMed Central  Google Scholar 

  214. Alexopoulos GS, Raue PJ, Banerjee S, Marino P, Renn BN, Solomonov N, et al. Comparing the streamlined psychotherapy “Engage” with problem-solving therapy in late-life major depression. A randomized clinical trial. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0832-3.

  215. Morimoto SS, Wexler BE, Liu J, Hu W, Seirup J, Alexopoulos GS. Neuroplasticity-based computerized cognitive remediation for treatment-resistant geriatric depression. Nat Commun. 2014;5:4579.

    CAS  PubMed  Google Scholar 

  216. Zecca L, Tampellini D, Gerlach M, Riederer P, Fariello RG, Sulzer D. Substantia nigra neuromelanin: structure, synthesis, and molecular behaviour. Mol Pathol. 2001;54:414–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Liang CL, Nelson O, Yazdani U, Pasbakhsh P, German DC. Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurons. J Comp Neurol. 2004;473:97–106.

    CAS  PubMed  Google Scholar 

  218. Shibata E, Sasaki M, Tohyama K, Kanbara Y, Otsuka K, Ehara S, et al. Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn Reson Med Sci. 2006;5:197–200.

    PubMed  Google Scholar 

  219. Castellanos G, Fernandez-Seara MA, Lorenzo-Betancor O, Ortega-Cubero S, Puigvert M, Uranga J, et al. Automated neuromelanin imaging as a diagnostic biomarker for Parkinson’s disease. Mov Disord. 2015;30:945–52.

    PubMed  Google Scholar 

  220. Kawaguchi H, Shimada H, Kodaka F, Suzuki M, Shinotoh H, Hirano S, et al. Principal component analysis of multimodal neuromelanin MRI and dopamine transporter PET data provides a specific metric for the nigral dopaminergic neuronal density. PLoS ONE. 2016;11:e0151191.

    PubMed  PubMed Central  Google Scholar 

  221. Cassidy CM, Zucca FA, Girgis RR, Baker SC, Weinstein JJ, Sharp ME, et al. Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proc Natl Acad Sci USA. 2019;116:5108–17.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institute of Health grants K24 MH110598, R01 MH123660 and R01 MH123662. WDT would additionally like to acknowledge salary support from the Tennessee Valley Healthcare System Geriatric Research Education and Clinical Center (GRECC).

Author information

Authors and Affiliations

Authors

Contributions

WDT, DHZ, JCF, SC, SMS and BRR drafted the manuscript, while WDT, DHZ, JCF, DOC, GH, JMM, KG, BRR contributed to the conceptualization, scientific model, integration of past literature, and critical revisions of the intellectual content. All authors approved the manuscript, with WDT, DHZ and BRR providing final approval for the published version.

Corresponding author

Correspondence to Warren D. Taylor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, W.D., Zald, D.H., Felger, J.C. et al. Influences of dopaminergic system dysfunction on late-life depression. Mol Psychiatry 27, 180–191 (2022). https://doi.org/10.1038/s41380-021-01265-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01265-0

This article is cited by

Search

Quick links