Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms

Abstract

The β-amyloid peptide (Aβ) that accumulates in senile plaques in Alzheimer's disease is formed by cleavage of the amyloid precursor protein (APP). The APP gene has several intronic Alu elements inserted in either the sense or antisense orientation. In this study, we demonstrate that binding of SC35 and hnRNPA1 to Alu elements on either side of exon 7 in the transcribed pre-mRNA is involved in alternative splicing of APP exons 7 and 8. Neuronal cells transfected with the full-length form of APP secrete higher levels of Aβ than cells transfected with the APP695 isoform lacking exons 7 and 8. Finally, we show that treatment of neuronal cells with estradiol results in increased expression of APP695, SC35 and hnRNPA1, and lowers the level of secreted Aβ. An understanding of the regulation of splicing of APP may lead to the identification of new targets for treating Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Glenner GG, Wong CW . Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120: 885–890.

    Article  CAS  Google Scholar 

  2. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K . Amyloid plaque core protein in Alzheimer's disease and Down's syndrome. Proc Natl Acad Sci USA 1985; 82: 4245–4249.

    Article  CAS  Google Scholar 

  3. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987; 325: 733–736.

    Article  CAS  Google Scholar 

  4. Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC . Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 1987; 235: 877–880.

    Article  CAS  Google Scholar 

  5. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, StGeorge-Hyslop O, Van Keuren ML et al. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 1987; 235: 880–884.

    Article  CAS  Google Scholar 

  6. Ponte P, Gonzalez-DeWhitt P, Schilling J, Miller J, Hsu D, Greenberg B et al. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 1988; 331: 525–527.

    Article  CAS  Google Scholar 

  7. Schmaier AH, Dahl LD, Rozemuller AJ, Roos RA, Wagner SL, Chung R et al. Protease nexin-2/amyloid beta protein precursor. A tight-binding inhibitor of coagulation factor IXa. J Clin Invest 1993; 92: 2540–2545.

    Article  CAS  Google Scholar 

  8. Van Nostrand WE, Schmaier AH, Wagner SL . Potential role of protease nexin-2/amyloid beta-protein precursor as a cerebral anticoagulant. Ann NY Acad Sci 1992; 674: 243–252.

    Article  CAS  Google Scholar 

  9. Mahdi F, Van Nostrand WE, Schmaier AH . Protease nexin-2/amyloid beta-protein precursor inhibits factor Xa in the prothrombinase complex. J Biol Chem 1995; 270: 23468–23474.

    Article  CAS  Google Scholar 

  10. Sinha S, Lieberburg I . Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci USA 1999; 96: 11049–11053.

    Article  CAS  Google Scholar 

  11. Graveley BR . Alternative splicing: increasing diversity in the proteomic world. Trends Genet 2001; 17: 100–107.

    Article  CAS  Google Scholar 

  12. Modrek B, Lee C . A genomic view of alternative splicing. Nat Genet 2002; 30: 13–19.

    Article  CAS  Google Scholar 

  13. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302: 2141–2144.

    Article  CAS  Google Scholar 

  14. Smith CW, Valcarcel J . Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 2000; 25: 381–388.

    Article  CAS  Google Scholar 

  15. Singh NN, Androphy EJ, Singh RN . The regulation and regulatory activities of alternative splicing of the SMN gene. Crit Rev Eukaryot Gene Expr 2004; 14: 271–285.

    Article  CAS  Google Scholar 

  16. Tsukahara T, Kunika N, Momoi T, Arahata K . Regulation of alternative splicing in the amyloid precursor protein (APP) mRNA during neuronal and glial differentiation of P19 embryonal carcinoma cells. Brain Res 1995; 679: 178–183.

    Article  CAS  Google Scholar 

  17. Shibata A, Hattori M, Suda H, Sakaki Y . Identification of cis-acting elements involved in an alternative splicing of the amyloid precursor protein (APP) gene. Gene 1996; 175: 203–208.

    Article  CAS  Google Scholar 

  18. Poleev A, Hartmann A, Stamm S . A trans-acting factor, isolated by the three-hybrid system that influences alternative splicing of the amyloid precursor protein minigene. Eur J Biochem 2000; 267: 4002–4010.

    Article  CAS  Google Scholar 

  19. Paquet-Durand F, Tan S, Bicker G . Turning teratocarcinoma cells into neurons: rapid differentiation of NT-2 cells in floating spheres. Brain Res Dev Brain Res 2003; 142: 161–167.

    Article  CAS  Google Scholar 

  20. Donev R, Horton R, Beck S, Doneva T, Vatcheva R, Bowen WR et al. Recruitment of heterogeneous nuclear ribonucleoprotein A1 in vivo to the LMP/TAP region of the major histocompatibility complex. J Biol Chem 2003; 278: 5214–5226.

    Article  CAS  Google Scholar 

  21. Bonnal S, Pileur F, Parker F, Pujol F, Prats AC, Vagner S . Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 2005; 280: 4144–4153.

    Article  CAS  Google Scholar 

  22. Gabut M, Mine M, Marsac C, Brivet M, Tazi J, Soret J . The SR protein SC35 is responsible for aberrant splicing of the E1α pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis. Mol Cell Biol 2005; 25: 3286–3294.

    Article  CAS  Google Scholar 

  23. Moir RD, Martins RN, Bush AI, Small DH, Milward EA, Rumble BA et al. Human brain beta A4 amyloid protein precursor of Alzheimer's disease: purification and partial characterization. J Neurochem 1992; 59: 1490–1498.

    Article  CAS  Google Scholar 

  24. Shen MR, Batzer MA, Deininger PL . Evolution of the master Alu gene(s). J Mol Evol 1991; 33: 311–320.

    Article  CAS  Google Scholar 

  25. Liu H-X, Chew SL, Cartegni L, Zhang MQ, Krainer AR . Exon splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 2000; 20: 1063–1071.

    Article  CAS  Google Scholar 

  26. Pahlsson P, Spitalnik SL . The role of glycosylation in synthesis and secretion of beta-amyloid precursor protein by Chinese hamster ovary cells. Arch Biochem Biophys 1996; 331: 177–186.

    Article  CAS  Google Scholar 

  27. Liu F, Su Y, Li B, Zhou Y, Ryder J, Gonzalez-DeWhitt P et al. Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett 2003; 547: 193–196.

    Article  CAS  Google Scholar 

  28. Thakur MK, Mani ST . Estradiol regulates APP mRNA alternative splicing in the mice brain cortex. Neurosci Lett 2005; 381: 154–157.

    Article  CAS  Google Scholar 

  29. Moir RD, Lynch T, Bush AI, Whyte S, Henry A, Portbury S et al. Relative increase in Alzheimer's disease of soluble forms of cerebral Abeta amyloid protein precursor containing the Kunitz protease inhibitory domain. J Biol Chem 1998; 273: 5013–5019.

    Article  CAS  Google Scholar 

  30. Caswell MD, Mok SS, Henry A, Cappai R, Klug G, Beyreuther K et al. The amyloid beta-protein precursor of Alzheimer's disease is degraded extracellularly by a Kunitz protease inhibitor domain-sensitive trypsin-like serine protease in cultures of chick sympathetic neurons. Eur J Biochem 1999; 266: 509–516.

    Article  CAS  Google Scholar 

  31. Ho L, Fukuchi K, Yonkin SG . The alternatively spliced Kunitz protease inhibitor domain alters amyloid beta protein precursor processing and amyloid beta protein production in cultured cells. J Biol Chem 1996; 271: 30929–30934.

    Article  CAS  Google Scholar 

  32. Kametani F, Tanaka K, Ishii T, Ikeda S, Kennedy HE, Allsop D . Secretory form of Alzheimer amyloid precursor protein 695 in human brain lacks β/A4 amyloid immunoreactivity. Biochem Biophys Res Commun 1993; 191: 392–398.

    Article  CAS  Google Scholar 

  33. Grover D, Mukerji M, Bhatnagar P, Kannan K, Brahmachari SK . Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 2004; 20: 813–817.

    Article  CAS  Google Scholar 

  34. Kreahling J, Graveley BR . The origins and implications of Aluternative splicing. Trends Genet 2004; 20: 1–4.

    Article  CAS  Google Scholar 

  35. Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS . A de novo Alu insertion results in neurofibromatosis type 1. Nature 1991; 353: 864–866.

    Article  CAS  Google Scholar 

  36. Ganguly A, Dunbar T, Chen P, Godmilow L, Ganguly T . Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A. Hum Genet 2003; 113: 348–352.

    Article  CAS  Google Scholar 

  37. Claverie-Martin F, Flores C, Anton-Gamero M, Gonzalez-Acosta H, Garcia-Nieto V . The Alu insertion in the CLCN5 gene of a patient with Dent's disease leads to exon 11 skipping. J Hum Genet 2005; 50: 370–374.

    Article  CAS  Google Scholar 

  38. Chen H, Hewison M, Hu B, Adams JS . Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: a cause of vitamin D resistance. Proc Natl Acad Sci USA 2003; 100: 6109–6114.

    Article  CAS  Google Scholar 

  39. Xia H . Regulation of gamma-fibrinogen chain expression by heterogeneous nuclear ribonucleoprotein A1. J Biol Chem 2005; 280: 13171–13178.

    Article  CAS  Google Scholar 

  40. Donev RM, Doneva TA, Bowen WR, Sheer D . HnRNP-A1 binds directly to double-stranded DNA in vitro within a 36 bp sequence. Mol Cell Biochem 2002; 233: 181–185.

    Article  CAS  Google Scholar 

  41. Burd CG, Dreyfuss G . RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 1994; 13: 1197–1204.

    Article  CAS  Google Scholar 

  42. Bai Y, Lee D, Yu T, Chasin LA . Control of 3′ splice site choice in vivo by ASF/SF2 and hnRNP A1. Nucleic Acids Res 1999; 27: 1126–1134.

    Article  CAS  Google Scholar 

  43. Blanchette M, Chabot B . Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization. EMBO J 1999; 18: 1939–1952.

    Article  CAS  Google Scholar 

  44. Garcia-Blanco MA, Baraniak AP, Lasda EL . Alternative splicing in disease and therapy. Nat Biotechnol 2004; 22: 535–546.

    Article  CAS  Google Scholar 

  45. Auboeuf D, Dowhan DH, Kang YK, Larkin K, Lee JW, Berget SM et al. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc Natl Acad Sci USA 2004; 101: 2270–2274.

    Article  CAS  Google Scholar 

  46. Shah YM, Basrur V, Rowan BG . Selective estrogen receptor modulator regulated proteins in endometrial cancer cells. Mol Cell Endocrinol 2004; 219: 127–139.

    Article  CAS  Google Scholar 

  47. Martinez-Contreras R, Fisette J-F, Nasim FH, Madden R, Cordeau M, Chabot B . Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLOS Biology 2006; 4: 172–185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr A Fujiyama, RIKEN-GSC, Japan for providing clone S491 used in amplification of the APP minigenes, Dr R Killick, Institute of Psychiatry, Denmark Hill, London and Dr Sara Nakielny, Cancer Research UK London Research Institute for helpful discussions. This work was partly supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Donev or D Sheer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donev, R., Newall, A., Thome, J. et al. A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms. Mol Psychiatry 12, 681–690 (2007). https://doi.org/10.1038/sj.mp.4001971

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001971

Keywords

This article is cited by

Search

Quick links