Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 24, 2005

Cytosolic persistence of mouse brain CYP1A1 in chronic heme deficiency

  • Ralf P. Meyer , Raija L.P. Lindberg , Francine Hoffmann and Urs A. Meyer
From the journal Biological Chemistry

Abstract

Previous work has demonstrated that the function of extrahepatic cytochrome P450 CYP1A1 is dependent on the availability of heme. CYP1A1 is involved in the activation of polyaromatic hydrocarbons. In the present study we used a transgenic mouse model with chronic impairment of heme synthesis – female porphobilinogen deaminase-deficient (PBGD-/-) mice – to investigate the effects of limited heme in untreated and β-naphthoflavone (β-NF)-treated animals on the function of CYP1A1 in brain. The heme content of PBGD-/- mice was diminished in the liver and brain compared to wild types. In the liver, partial heme deficiency led to less potent induction of CYP1A1 mRNA after β-NF treatment. In the brain, CYP1A1 protein was detected not only at the endoplasmic reticulum (ER), but also in the cytosol of PBGD-/- mice. Furthermore, 7-deethylation of ethoxyresorufin, an indicator of CYP1A1 metabolic activity, could be restored by heme in cytosol of PBGD-/- mouse brain. Independent of the genotype, we found only one cyp1a1 gene product, indicating that the cytosolic appearance of CYP1A1 most likely did not originate from mutant alleles. We conclude that heme deficiency in the brain leads to incomplete heme saturation of CYP1A1, which causes its improper incorporation into the ER membrane and persistence in the cytosol. It is suggested that diseases caused by relative heme deficiency, such as hepatic porphyrias, may lead to impaired hemoprotein function in brain.

:

Corresponding author

References

Abraham, N.G., Jiang, S., Yang, L., Zand, B.A., Laniado-Schwartzman, M., Marji, J., Drummond, G.S., and Kappas, A. (2000). Adenoviral vector-mediated transfer of human heme oxygenase in rats decreases renal heme-dependent arachidonic acid epoxygenase activity. J. Pharmacol. Exp. Ther.293, 494–500.Search in Google Scholar

Alam, J., Killeen, E., Gong, P., Naquin, R., Hu, B., Stewart, D., Ingelfinger, J.R., and Nath, K.A. (2003). Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am. J. Physiol. Renal Physiol.284, F743–F752.10.1152/ajprenal.00376.2002Search in Google Scholar

Bissell, D.M. and Hammaker, L.E. (1976a). Cytochrome P-450 heme and the regulation of delta-aminolevulinic acid synthetase in the liver. Arch. Biochem. Biophys.176, 103–112.10.1016/0003-9861(76)90145-4Search in Google Scholar

Bissell, D.M. and Hammaker, L.E. (1976b). Cytochrome P-450 heme and the regulation of hepatic heme oxygenase activity. Arch. Biochem. Biophys.176, 91–102.10.1016/0003-9861(76)90144-2Search in Google Scholar

Bonkovsky, H.L., Healey, J.F., Lourie, A.N., and Gerron, G.G. (1991). Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am. J. Gastroenterol.86, 1050–1056.Search in Google Scholar

Burke, M.D., Thompson, S., Elcombe, C.R., Halpert, J., Haaparanta, T., and Mayer, R.T. (1985). Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem. Pharmacol.34, 3337–3345.10.1016/0006-2952(85)90355-7Search in Google Scholar

Carvalho, H., Bechara, E.J., Meneghini, R., and Demasi, M. (1997). Haem precursor δ-aminolaevulinic acid induces activation of the cytosolic iron regulatory protein 1. Biochem. J.328, 827–832.10.1042/bj3280827Search in Google Scholar

Correia, M.A. and Meyer, U.A. (1975). Apocytochrome P-450: reconstitution of functional cytochrome with hemin in vitro. Proc. Natl. Acad. Sci. USA72, 400–404.10.1073/pnas.72.1.400Search in Google Scholar

da Silva, J.L., Zand, B.A., Yang, L.M., Sabaawy, H.E., Lianos, E., and Abraham, N.G. (2001). Heme oxygenase isoform-specific expression and distribution in the rat kidney. Kidney Int.59, 1448–1457.10.1046/j.1523-1755.2001.0590041448.xSearch in Google Scholar

Daniell, W.E., Stockbridge, H.L., Labbe, R.F., Woods, J.S., Anderson, K.E., Bissell, D.M., Bloomer, J.R., Ellefson, R.D., Moore, M.R., Pierach, C.A., et al. (1997). Environmental chemical exposures and disturbances of heme synthesis. Environ. Health Perspect.105 (Suppl. 1), 37–53.Search in Google Scholar

De Matteis, F. and Marks, G.S. (1996). Cytochrome P450 and its interactions with the heme biosynthetic pathway. Can. J. Physiol. Pharmacol.74, 1–8.10.1139/y95-234Search in Google Scholar

De Matteis, F., Zetterlund, P., and Wetterberg, L. (1981). Brain 5-aminolaevulinate synthase. Developmental aspects and evidence for regulatory role. Biochem. J.196, 811–817.Search in Google Scholar

Fraser, D.J., Zumsteg, A., and Meyer, U.A. (2003). Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene. J. Biol. Chem.278, 39392–39401.10.1074/jbc.M306148200Search in Google Scholar

Giger, U. and Meyer, U.A. (1983). Effect of succinylacetone on heme and cytochrome P450 synthesis in hepatocyte culture. FEBS Lett.153, 335–338.10.1016/0014-5793(83)80637-1Search in Google Scholar

Gonzalez, F.J. (1990). Molecular genetics of the P-450 superfamily. Pharmacol. Ther.45, 1–38.10.1016/0163-7258(90)90006-NSearch in Google Scholar

Gonzalez, F.J., Mackenzie, P.I., Kimura, S., and Nebert, D.W. (1984). Isolation and characterization of full-length mouse cDNA and genomic clones of 3-methylcholanthrene-inducible cytochrome P1-450 and P3-450. Gene29, 281–292.10.1016/0378-1119(84)90057-XSearch in Google Scholar

Hamilton, J.W., Bement, W.J., Sinclair, P.R., Sinclair, J.F., and Wetterhahn, K.E. (1988). Expression of 5-aminolaevulinate synthase and cytochrome P-450 mRNAs in chicken embryo hepatocytes in vivo and in culture. Effect of porphyrinogenic drugs and haem. Biochem. J.255, 267–275.Search in Google Scholar

Handschin, C. and Meyer, U.A. (2003). Induction of drug metabolism: the role of nuclear receptors. Pharmacol. Rev.55, 649–673.10.1124/pr.55.4.2Search in Google Scholar

Hankinson, O., Brooks, B.A., Weir-Brown, K.I., Hoffman, E.C., Johnson, B.S., Nanthur, J., Reyes, H., and Watson, A.J. (1991). Genetic and molecular analysis of the Ah receptor and of Cyp1a1 gene expression. Biochimie73, 61–66.10.1016/0300-9084(91)90075-CSearch in Google Scholar

Iba, M.M., Storch, A., Ghosal, A., Bennett, S., Reuhl, K.R., and Lowndes, H.E. (2003). Constitutive and inducible levels of CYP1A1 and CYP1A2 in rat cerebral cortex and cerebellum. Arch. Toxicol.77, 547–554.10.1007/s00204-003-0488-1Search in Google Scholar PubMed

Ingi, T., Chiang, G., and Ronnett, G.V. (1996). The regulation of heme turnover and carbon monoxide biosynthesis in cultured primary rat olfactory receptor neurons. J. Neurosci.16, 5621–5628.10.1523/JNEUROSCI.16-18-05621.1996Search in Google Scholar

Jover, R., Hoffmann, K., and Meyer, U.A. (1996). Induction of 5-aminolevulinate synthase by drugs is independent of increased apocytochrome P450 synthesis. Biochem. Biophys. Res. Commun.226, 152–157.10.1006/bbrc.1996.1325Search in Google Scholar PubMed

Jover, R., Hoffmann, F., Scheffler-Koch, V., and Lindberg, R.L. (2000). Limited heme synthesis in porphobilinogen deaminase-deficient mice impairs transcriptional activation of specific cytochrome P450 genes by phenobarbital. Eur. J. Biochem.267, 7128–7137.10.1046/j.1432-1327.2000.01815.xSearch in Google Scholar PubMed

Kloepper-Sams, P.J. and Stegeman, J.J. (1994). Turnover of hepatic microsomal cytochrome P4501A protein and heme in beta-naphthoflavone-induced Fundulus heteroclitus. Mol. Mar. Biol. Biotechnol.3, 171–183.Search in Google Scholar

Lindberg, R.L.P., Porcher, C., Grandchamp, B., Ledermann, B., Bürki, K., Brandner, S., Aguzzi, A., and Meyer, U.A. (1996). Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat. Genet.12, 195–199.10.1038/ng0296-195Search in Google Scholar PubMed

Lindberg, R.L., Martini, R., Baumgartner, M., Erne, B., Borg, J., Zielasek, J., Ricker, K., Steck, A., Toyka, K.V., and Meyer, U.A. (1999). Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria. J. Clin. Invest.103, 1127–1134.10.1172/JCI5986Search in Google Scholar PubMed PubMed Central

Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

Maines, M.D. (2000). The heme oxygenase system and its functions in the brain. Cell Mol. Biol.46, 573–585.Search in Google Scholar

Maines, M.D. and Jollie, D.R. (1984). Dissociation of heme metabolic activities from the microsomal cytochrome P-450 turnover in testis of hypophysectomized rats. J. Biol. Chem.259, 9557–9562.10.1016/S0021-9258(17)42736-0Search in Google Scholar

McFayden, M.C., Melvin, W.T., and Murray, G.I. (1998). Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem. Pharmacol.55, 825–830.10.1016/S0006-2952(97)00516-9Search in Google Scholar

Meier, P.J., Gasser, R., Hauri, H.P., Stieger, B., and Meyer, U.A. (1984). Biosynthesis of rat liver cytochrome P-450 in mitochondria-associated rough endoplasmic reticulum and in rough microsomes in vivo. J. Biol. Chem.259, 10194–10200.10.1016/S0021-9258(18)90948-8Search in Google Scholar

Meyer, R.P., Hagemeyer, C.E., Knoth, R., Kurz, G., and Volk, B. (2001a). Oxidative hydrolysis of scoparone by cytochrome P450 Cyp2c29 reveals a novel metabolite. Biochem. Biophys. Res. Commun.285, 32–39.10.1006/bbrc.2001.5111Search in Google Scholar PubMed

Meyer, R.P., Knoth, R., Schiltz, E., and Volk, B. (2001b). Possible Function of astrocyte cytochrome P450 in control of xenobiotic phenytoin in the brain: in vitro studies on murine astrocyte primary cultures. Exp. Neurol.167, 376–384.10.1006/exnr.2000.7553Search in Google Scholar PubMed

Meyer, R.P., Podvinec, M., and Meyer, U.A. (2002). Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol. Pharmacol.62, 1061–1067.10.1124/mol.62.5.1061Search in Google Scholar PubMed

Morse, D.C., Stein, A.P., Thomas, P.E., and Lowndes, H.E. (1998). Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicol. Appl. Pharmacol.152, 232–239.10.1006/taap.1998.8477Search in Google Scholar PubMed

Mustajoki, P., Mustajoki, S., Rautio, A., Arvela, P., and Pelkonen, O. (1994). Effects of heme arginate on cytochrome P450-mediated metabolism of drugs in patients with variegate porphyria and in healthy men. Clin. Pharmacol. Ther.56, 9–13.10.1038/clpt.1994.94Search in Google Scholar PubMed

Namkung, M.J., Faustman-Watts, E., and Juchau, M.R. (1983). Hematin-mediated increases of benzo(a)pyrene mono-oxygenation in maternal, fetal and placental tissues of inducible and non-inducible mouse strains. Dev. Pharmacol. Ther.6, 199–206.10.1159/000457295Search in Google Scholar PubMed

Näslund, B.M.A., Glauman, H., Warner, M., Gustafsson, J.A., and Hansson, T. (1988). Cytochrome P450 b and c in the rat brain and the pituitary gland. Mol. Pharmacol.33, 31–37.Search in Google Scholar

Nelson, D.R. (2004). P450 nomenclature and overview. URL: http://drnelson.utmem.edu/cytochromep450.html.Search in Google Scholar

Omiecinski, C.J. and Juchau, M.R. (1980). Activators of cytochrome P-450 dependent monooxygenation reactions. Proc. West. Pharmacol. Soc.23, 9–10.Search in Google Scholar

Omiecinski, C.J., Namkung, M.J., and Juchau, M.R. (1980). Mechanistic aspects of the hematin-mediated increases in brain monooxygenase activities. Mol. Pharmacol.17, 255–232.Search in Google Scholar

Ourlin, J.C., Handschin, C., Kaufmann, M., and Meyer, U.A. (2002). A link between cholesterol levels and phenobarbital induction of cytochromes P450. Biochem. Biophys. Res. Commun.291, 378–384.10.1006/bbrc.2002.6464Search in Google Scholar

Padmanaban, G., Venkateswar, V., and Rangarajan, P.N. (1989). Haem as a multifunctional regulator. Trends Biochem. Sci.14, 492–496.10.1016/0968-0004(89)90182-5Search in Google Scholar

Park, S.S., Fujino, T., Guengerich, F.P., and Gelboin, H.V. (1982). Monoclonal antibodies that inhibit enzyme activity of 3-methylcholanthrene-induced cytochrome P-450. Cancer Res.42, 1798–1808.Search in Google Scholar

Rangarajan, P.N. and Padmanaban, G. (1989). Regulation of cytochrome P-450b/e gene expression by a heme- and phenobarbitone-modulated transcription factor. Proc. Natl. Acad. Sci. USA86, 3963–3967.10.1073/pnas.86.11.3963Search in Google Scholar

Reed, C.J., van den Broeke, L.T., and De Matteis, F. (1989). Drug-induced protoporphyria in the olfactory mucosa of the hamster. J. Biochem. Toxicol.4, 161–164.10.1002/jbt.2570040304Search in Google Scholar

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning. (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press).Search in Google Scholar

Sassa, S. (2002). The porphyrias. Photodermatol. Photoimmunol. Photomed.18, 56–67.10.1034/j.1600-0781.2002.180202.xSearch in Google Scholar

Schuurmans, M.M., Hoffmann, F., Lindberg, R.L., and Meyer, U.A. (2001). Zinc mesoporphyrin represses induced hepatic 5-aminolevulinic acid synthase and reduces heme oxygenase activity in a mouse model of acute hepatic porphyria. Hepatology33, 1217–1222.10.1053/jhep.2001.24170Search in Google Scholar

Sultana, S., Nirodi, C.S., Ram, N., Prabhu, L., and Padmanaban, G. (1997). A 65-kDa protein mediates the positive role of heme in regulating the transcription of CYP2B1/B2 gene in rat liver. J. Biol. Chem.272, 8895–8900.10.1074/jbc.272.14.8895Search in Google Scholar

Thuerl, C., Otten, U., Knoth, R., Meyer, R.P., and Volk, B. (1997). Possible role of cytochrome P450 in inactivation of testosterone in immortalized hippocampal neurons. Brain Res.762, 47–55.10.1016/S0006-8993(97)00259-XSearch in Google Scholar

Zhang, L., Hach, A., and Wang, C. (1998). Molecular mechanism governing heme signaling in yeast: a higher-order complex mediates heme regulation of the transcriptional activator HAP1. Mol. Cell Biol.18, 3819–3828.10.1128/MCB.18.7.3819Search in Google Scholar PubMed PubMed Central

Published Online: 2005-11-24
Published in Print: 2005-11-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.132/html
Scroll to top button